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Abstract

NThis report is concerned with the characterization of the structure

and performance of digital communication systems operating in spatially

distributed interference channels when a multi-element array processing

capability is available. It represents one phase of a continuing investi-

gation and covers the period 1 July, 1980 through 31 March, 1981.

This report is organized into five parts. Part I describes an optimum

receiver structure for digital communication in spatially distributed inter-

ference when a multi-element array capability is available and under spec-

ific and somewhat simplified modeling assumptions. The results are useful

in demonstrating the subtle interactions between spatial and temporal pro-

cessing characteristic of an optimum receiver, particularly the modulation/

coding tradeoffs. Part II discusses some new reduced compexity soft-

*decision decoding algorithms for linear block codes while Part III describes

some new rational-rate convolutional code constructions. Both of these

should be useful in impulsive or burst interference environments. In Part

IV we describe some results on the modeling and analysis of selected linear

and nonlinear receiver structures in impulsive or burst noise channels.

Finally, an outline of how multi-element adaptive array processing struct-

ures are to be incorporated into the RPI developed Interactive Communica-

tions Simulator (ICS) is provided in Part V. It should be noted that these

four parts have been written as logically d s ct entities and as a result

there is some repetition of basic material.
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PART I

ADAPTIVE MULTI-EL34ENT RECEIVER STRUCTURE FOR MAXIMUM-LIKELIHOOD

SEQUENCE ESTIMATION IN A SPATIALLY DISTRIBUTED INTERFERENCE CHANNEL
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I. Introduction:

In synchronous carrier-modulated digital communication systems the main

impediments to reliable transmission are intersymbol interference (ISI), add-

itive channel noise, and errors associated with the ancillary functions of

phase tracking and symbol synchronization. For single-element systems, re-

ceiver structures have been devised [1]-[31 which deal with these issues in

an optimum manner. Specifically, under appropriate modeling assumptions, the

reception problem is posed as one of maximum-likelihood (1M) sequence esti-

mation. This assures that the receiver is optimum in the sense of minimizing

the sequence-error probability, provided, of'course, that all sequences are

equally likely. By now these single-element receiver structures have been

thoroughly researched and are quite well understood.

In an increasing number of important applications, however, one of the

major impediments to reliable communications is the effect of spatially dis-

tributed interference. This may be due to hostile electronic countermeasures

(ECM) or jamming, or unintentional radio-frequency interference (RFI). With

the addition of a multi-element array capability it is possible to provide

spatial filtering in an effort to combat this interference by exploiting its

"- spatially distributed nature. It is of some interest then to explore the

. structure and properties of ML sequence estimating receivers under the assump-

- -tion of spatially distributed interference and the availability of an adap-

*" tive multi-element array capability.

The present report describes some preliminary work directed toward the

.. development of optimum adaptive multi-element receiver structures for digital

-. communications in the presence of spatially distributed interference.

1-2
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Specifically, we describe an optimum receiver structure under specific

modeling assumptions for ML estimation of a linear carrier-modulated binary

data sequence. This optimum structure consists of an interference suppress-

ion spatial filter followed by a matched filter sampled at the baud rate,

and a recursive nonlinear processor employing the Viterbi algorithm (VA) to

perform ML sequence estimation. The result is a practically implementable

optimum spatial/temporal processor which provides a significant multi-element

extension of previous single-element receiver structures described in [2],[3).

Some preliminary modeling assumptions .are provided in Section II. This

is followed by the development of the optimum ML receiver structure in Section

III. The VA sequence estimator is described in Section IV. An adaptive imple-

mentation of the ML receiver structure is described in Section V. Finally, a

summary and conclusions can be found in Section VI.

II. Preliminaries:

In what follows we will make exclusive use of complex signal and noise

representations. Specifically, the received signal at the output of the i'tb

array element is assumed of the form

ri(t)- Re{ (t)eJ27fct

where f is an assumed known carrier frequency in Hz and i(t)=r ci(t )-rsi(t)

is the corresponding complex envelope. The quantities r ci(t) and r si(t) are

lowpass waveforms representing the inphase and quadrature (I/Q) components,

respectively. We assume that i(t) can be expressed in the form
"(.

"o -" it=it;,,)it); i=1,2, ... ,N, (2)

* where n(t) is the total additive noise, consisting of both spatially distri-(ii

buted interference and thermal element noise, at the output of the i'th element

1-3
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and (t0,T,4) is the corresponding signal component. The quantity t iio '

a complex vector of dimension 21M+1 representing the binary data sequence to

be transmitted in a manner specific to the modulation strategy in use while

Tr and 4)represent unknown timing delay and phase offset, respectively. We

suppose that the complex envelope of the signal component can in turn be

expressed as

(t . - .,)...-. .d: - i =1 ,2 ,.. . ... (3 )

.- 0-

Here g(t;Z,t,O) is the transmitted signal component as it would appear at the

output of an ideal isotropic sensor. The quantity h (t) in (3) represents
jo

the complex impulse response of the signal path, including channel filtering

effects and propagation across the array aperture. For example, if no channel

filtering effects are present h (ot) T =t( io )ei2Wc iO where T ois the re-

laive delay in receiving the signal component at the i'th sensor measured

- -with respect to some fixed phase center or origin of spatial coordinates.

* The impulsive component accounts for the group delay of the complex envelope,

-- while the complex expoential accounts for the relative phase shift of the

carrier. The quantities T .O i=1,2,... ,N can generally be calculated from

knowledge of the signal direction and the assumed array geometry. For

* example, consider the linear array illustrated in Fig. 1 with signal direction

indicated by the angle e measured with respect to boresight. If the distance

in wavelengths of the isth element from the origin is d! then Tr =dsine,

i=,2,...,N with the algebraic sign depending upon which side of the phase

center the element lies. In what follows, we assume that the signal direction,

- In what follows all vectors are to be considered column vectors so that

,c0 ,.. ,c 1 1 ,c)

1-4
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es in Fig. 1, is known a priori although this could be included in addition

to T and $ as a parameter to be estimated.

In general, some channel filtering is present so that the signal path

impulse response function can be represented as hi (t)=h (t-T o)e ciO,
io ciO,

where h (t) is the channel impulse response common to all elements. For the

channels of interest, the bandwidth Bc will always be such that B cTio<<l and

hence h (t- )=h (t), i=1,2,... ,N. Under this assumption h (t)=
c io c i

hc(t)ei2Ufc iO, i=l,2,... ,N, which will be the form used in what follows.
C

The transmitted signals of interest will be assumed of the form t

M""Et T,) Mi(t-mnTs-T)eJ ; -(M+I/2)T s <t<(M+I./2)T s , (4)

m= -M

where Ts is the channel signaling element or baud interval and j(t) is a

complex lowpass pulse-like waveform vanishing outside the interval

-T s/2<t<T s/2. It follows, according to preceding comments, that

* s 0 (tcZ, 2)= h h(t-mT s-T)e( i0 i=l,2,...,N , (5)
m= -Mm

where ti0 _ 27fcTi0 and h(t) = g(t) bc(t) represents the convolution of

the baseband pulse waveform and the channel impulse response.

Consider now the additive noise term ?i(t) in (2). We assume this can

be written in the form

b 
"  (t)--yi0 (t)+wi (t); i=1,2,...,N ,(6)

where io(t) represents spatially distributed interference at the output of

the i'th element and i (t) is a complex zero-mean white Gaussian noise (WGN)i

process assumed independent from element-to-element. Specifically,

t Note that we are restricting attention to linear carrier modulation formats.
Certain offset quadrature modulation schemes such as MSK do not fit into
this formulation.

1-5



wi(t)--wi (t)-jws(t), with the I/Q components wi(t) and w (t) mutually" i sic si

independent WGN processes with double-sided noise spectral density NO/2

watts/Hz. We assume that i(t) can be represented in the form

= y(t )eJ"iJ ; i=1,2,...,N . (7):"; J=l

Here 3 (t) represents the J'th interference component originating from some

unknown direction. For example, in the case of a linear array, the direction

of the J'th interferer is indicated by the off-boresight angle 6 as illust-

rated in Fig. 1. The quantity TiJ represents the relative delay experienced

by the J'th interfering signal as intercepted at the i'th element, il,2,...

J=1,2,... ,J. Again, in the case of a linear array we have Tij=+d'sinO
I 3

Similarly, the phase factors iJ in (7) are given by ij=27f cTij.

The individual interfering signals (t), J=1,2,... ,J are generally

S"complex broadband processes. We will make the simplifying assumption in

what follows that these quantities are all complex mutually uncorrelated

zero-mean Gaussian processes with covariance functions

K~ ~ It's)= E.(t)*(s)) ; 3=l,2,...,J • (8)Y J

It follows that the total noise power Zi(t) at the output of the i'th sensor

is Gaussian with cross-covariance function

.K i(t,s) = K_ - (t,s)+N06(t-s) ; i=J

i3i

where
JJ

K _1 (t,s)=Ey i) (S))= K! -(t-Ts-T )e ik-Ojk)Y'i io "- k=l Yky k ' - k -"(10)

This information will be made use of in what follows.

t We have tried to indicate complex scalar quantities with a tilde "".
Covariance functions,system transfer functions and all matrix quantities

will be implicitly assumed complex so that the tilde will be eliminated.

1-6
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III. Maximum-Likelihood Receiver Structure:

The element output signal can be expressed in vector form as

-T
where r (t)--(r(t),r 2 (t),... ,rN(t) with _(t;c_,T,) and R(t) obtained similar-

ly from the corresponding elements of r(t). Given the quantities , and,

of course, the signal phase factor ±;=( 1o0-2o'" ,$No) , the signal vector

- - .t
!O(t;Z,T,O) is completely known . The quantity i(t) is then a complex Gaussian

process with mean-value function 0(t;c,T,O) and covariance matrix K--(t,s)=

-O =r

K--(t,s) where 
tt

,"]'-. ~~K__(t ,s)=E{n(t)n (s) }=_-(t ,s)+No__=I(ts. (12)

, Here I is the NxN identity matrix and K__(ts)-h{v(t) (s)} is the covariance

matrix associated with the vector interference process io(t)=(Yl0(t), 20(t),

From previous co-mments

K- (t's) K_ (t,s) ....... K_ (t,sr
yiyi Y1Y2 Y1YN
K- (t's) K- (t,s) .... K_ - (t's)
Y2Y1 Y2Y2 Y2YN

K--(ts)= ,(13)
-yy

K-- (t,s) KN -(ts) ....... KNNt ,s)

with the cross-covariance terms K_ - (t,s) given by (10).
YiYj

As a relatively straightforward application of known results (cf. [4]

[5]), it can be shown that the log-likelihood functional for observing i(t)

given fixed values of the parameters 6, T, and * is given by

t The signal path overall impulse response function h(t) is also assumed

known.
t1 Here, and in what follows, the symbol "t" will represent complex con-

jugate transpose.

1-7
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- ff(t;E,T,O)iln(t ,U)iv(U; ,T,O)dtdU (14)

where Q-=(t,u) is an Nxii Hermitian matri5x, called the inverse covariance matrix,

satisfying

F _(t,u)jj(u,s)du =I 6(t-s) .(5

*Substitution of (5) into the argument of the first term on the right-hand side

of (14) yields f t).tuj(;,,)td

M S (16)

* where is now a vector of length 2M+l, with components defined according to

-m (t f4 ('~*um fT~ Lodt m=0,±l,... ,±4. (17)

-T -wl 
J 20 . -OHeretZ is a complex N-vector defined according to I ,e .. ,e No).

After some simple algebra it can be shown that can be expressed in the form
m

_T f (t )e-iG*t(MT+) +t

-T
m0O,±l,±2,... ,±M ,(8

* where

= xmT~ ;m0O,±l,±2,.. .,±M (19)

*t As we will see Ois merely a beam-steering vector which allows pointing
a beam in the known signal direction.

1-8



with

and we have implicitly assumed here, and in what follows, that the interfer-

ence process i0 (t) is wide-sense stationary (w.s.s.) so that K-.-(t,u)=L..(t-u)

and similarly, at least for long observation intervals, that _(tu)=_(t-u).

Equivalently, it can be shown that G(t) satisfies the matrix integral equation

f K(t,sG(s)ds=I h(t) ; --<t<-. (21)

The quantity -r m=0, 1, 2,..., M in (19) has an interpretation as the sampled

output of a multi-channel filter with impulse response matrix G (-t) and

input i(t)e -io. Sampling is assumed to take place at the times t--mTs+T,

m=O,-l,-2,... ,-M. The vector i is then weighted by the beam-steering vector

to form r according to (18). This weighting effectively orients the

array of elements to point in the known signal direction. A block diagram

* of a scheme for generating the sequence { ) is then as illustrated in Fig. 2.m

Note that the beam steering is accomplished at the output of the multi-channel

filter and not the input as in most conventional adaptive array systems. It

should also be noted that in the absence of spatially distributed interference,

or indeed merely the absence of correlation across the array elements, (21)

is trivially solved with G(t) proportional to a diagonal matrix with h(t) along

the main diagonal.

In a similar manner, it can be shown that the integral appearing in the

second term in (14) can be expressed as

_ (tu)§(u;j,T,)dtdu=a H 6 (22)

where H is an Hermitian matrix of size (2M+I)x(2M+l) independent of the

1-9
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observations with (m,n) element h given by
m-n

hm_n=_4 { f J" h*(t-mT s-.T ) (t-u)h(u-nT s-)dtdu} m ,n=O,±a,
"- -- ... ,±M. (23)

Again we assume that all quantities in (23) are known so that H in (22) is

readily evaluated.

It follows from the preceding that the log-likelihood functional in (14)

can then be expressed in the form

.; .- =(112 1/2 8€ H d

_){r c+c r-c H a) (24)

.C1 - 1 tH 1(-H-l

where the last equality is easily verified through simple vector-matrix

algebra. The objective then is to choose estimates _,T and 0 to maximize

this quantity. It should be clear from (24) that the vector r, representing

the sequence of outputs from the processor illustrated in Fig. 2, provides

a sufficient statistic for extracting all the parameters.

The system illustrated in Fig. 2 for generating the sequence of observ-

ables {2mI provides combined spatial/temporal processing in the single multi-

. channel filter with impulse response matrix g (-t). It may be desirable in

some cases to separate the spatial and temporal processing to the extent

possible. Indeed, this is generally the case in conventional array process-

ing systems. This can be accomplished by observing that P in (17) can
m

alternately be expressed in the form

26M = [h*(-t) W{i'(t)e-JO)] ;m=O,±l,...,±M, (25)Sm t=mTs+

~where nowK'"-.. 3'(t) = [ iit t]; -- <t<w. (26)

.7



The term within brackets in (26) represents again a combined spatial/temporal

multi-channel filtering operation although the common "matched filtering"

operation, represented by the convolution with h*(-t), is now performed

separately at the array output. This is illustrated in block diagram form

in Fig. 3 where the spatial/temporal processor in the array forming network

now has impulse response matrix _ (t).

In either case, the multi-element NL processor then chooses the estimated

sequence c to maximize the log-likelihood functional in (24) while the timing

and phase estimates, T and e respectively, solve the coupled equations

-. 0 (279)

and BT

S = 0 . (2Tb)

-A
Clearly then.E is chosen as the "legitimate" sequence minimizing the perform-

ance measure-:, = _E- _) _(~~ (28)

" Note that the solution is not merely k= I since this is in general analog-

valued and need not be a legitimate data sequence. As shown in [2], the

operation H represents an equalizer, in this case attempting both to equal-

- ize the effects of ISI and spatially distributed interference. The convention-

al approach to obtaining jis to pass the observation sequence, represented

- in this case by _, through an equalizer and then quantize the output on a

symbol-by-symbol basis to the closest valid data symbol value. In the next

* section we describe how the VA can be used to choose the ML estimate _. First

we show how the estimates T and * can be chosen in a decision-directed manner
* to satisfy the ML equation (27).

" -i



Suppose that a sequence of observations each of total length (2M+l)T

are made by sliding the observation window by K baud at each iteration. Let

ii(t) represent the V-vector of observations obtained at the i'th iteration,

i.e., for t in the range (iK-M-l/2)T,<t<(iK+M+l/2)T s.Note that if K=-2M+l

there will be no overlap in the observation windows while if K1l the window

* is merely slid by one baud each iteration. At any rate, according to (24~)

the log-likelihood functional is given by

Il (t);-,,Z Re{cti -(1/2)4 q (29)

wher noMwj~M1,. irK. ,i~+ and similarly, T
=i where now+."" rK" -K+ '- K-M'

~iK-~l' ~ ~a It follows that
iK-M+'**"iK"" iK+M

(30a)

and

a. -- 4 ,(30b)

where according to either (18) or (25) we have the m'th element of r.given by

d d
rim ~~~1t(iK+m)T +-r O ±,..' (31a)

1- s
or

i~m ti t=(iK+m)T +'T

respectively. In either case, the estimates can be generated recursively

according to the stochastic gradient schemes

= + aIn{ ; i=O,l.... (32a)

and

T + BR{r ;i=O,l,..., (32b)

t Again 5I(t) represaonts observations on x'(t) over the window (iK-M-1/2)T <
* t<(iK+M+l/2)T 1
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= • t .of f t,

Here 60, T are arbitrary and the positive real step sizes {ai ) and {) must

be specified. Note that the recursive estimators described by (32) are de-

cision-directed in the sense that estimated sequences {i are actually used

in place of the actual but unkn sequences {.i . The resulting decision-

directed structure is illustrated in Fig. 4.

As a special case, suppose we use non-overlapping blocks (i.e., K=2m+l)

of matched filter outputs with

i i=0

and similarly for {Bi. This is the so-called Robbins-Monroa stochastic approx-

imation algorithm. Here it can be shown that convergence to the true ML esti-

I mates is obtained both in mean-square and with probability one. In practice

i it may be desirable to update the timing and phase errors more frequently, say

at the baud rate by taking K= e Convergence is not assured in this case.

IV. Viterbi Algorithm Seauence Estimator:

We describe now how the VA is to be used to obtain the ML etiuato e

of a transmitted data sequence c. For the moment assume that the m'th

sequence a of length 2M+1 is transmitted. According to (24) the log-

likelihood functional can be written as

-£{ (t);: I = Re. _,z )-(1/2 .- M

= Re(E* P i " (34)

2i=-M i=-M J=-M

where for simplicity we have neglected the symbol timing and phase tracking

errors T and *, respectively. The quadratic term can then be written as

t This notation differs somewhat from that used in association with (29)
and the sequel. Hopefully the meaning in either case is clear from the
context.
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4 M M 1 ; .
I I h o I +2Ee f Ii=-M j----M mi i-j mj i=-M M 0 i -M J=-M mi i-j m~j

M JM M+i

= ~ III2h0+2Re z ~ hk mi-k (5
1i=-M k I

We assume that the filter memory is such that k0 for k>_, where K<<M. It

follows that
M 1r- min(K-lM+i) _

-{1(t);, M 1 I bka- el j , (36)
imM k=l

or equivelently,

) ),(m) (37)
"Z--_-

where X ) is the "branch metric" associated with the lth branch along the

m'th path given by

Re(Z..L}-(l/2)IIE 0 -felc I S (
k~l r

Note that evaluation of the branch metric X requires knowledge of at most

K-1 past data symbols, i.e., c kk=Owl...min(K-l,M+1). Indeed, the

sum ation in the last term of J38) represents a finite-impulse response (FIR)

filtering operation which can be implemented as a transversal filter. A

scheme for evaluating this branch metric is illustrated in Fig. 5.

The totality of possible paths or data sequences can then be described

in terms of a trellis structure defined in terms of the K-1 most recent symbols.

Define the cumulative path metric up to level k in the trellis according to

d. (39)

with d_,_l(_,E,)=O for all m. The VA then searches the trellis attempting

to find that path which maximizes the cumulative path metric through level M

1-1.4



* of the trellis. A block diagram illustrating the operation of the ML

sequence estimator employing the VA is then illustrated in Fig. 6. Act-

ually, there is no need to impose a block structure on the VA sequence

estimator. Specifically, the scheme can be made synchronous with the baud

rate by outputing a delayed symbol estimate i-D during the i'th-baud

interval with D>>K an appropriate delay. The estimate Fi-D is selected as

the symbol in the corresponding position along the surviving path with the

largest cumulative path metric at level i. This is a relatively straight-

forward application of the VA as used in practice.

V. Adantive Implementation:

In the preceding we have assumed explicit know-ledge of the complex

channel response B (t), or equivalently B(t), as well as the covariancec

matrix _j (ts) of the interference component as described by (13). In.

particular, this allowed evaluation of the spatial/temporal matched filters

in either Fig. 2 or Fig. 3, as well as the sampled channel correlation matrix

H defined through (23). Recall that this latter quantity was required for

calculation of the branch metrics in the VA as illustrated in Fig. 5. Un-

fortunatelyi information on S(t) and K--(t,s) is not generally available and
=yy

one must then seek an adaptive implementation of the ML receiver structure.

One adaptive implementation, suggested by the approach in [3), is to

approximate the unknown spatial/temporal filtering operations by a class of

finite-parameter filters whose parameter values can be adaptively adjusted

to approximate the desired response. There are two different approaches here

depending upon whether the implementation in Fig. 2 or that in Fig. 3 is

employed. In the latter there must be two adaptive loops; one to adjust

elements of the temporal matched filter h*(-t), and a second to adjust

1-15
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elements of the multi-channel spatial/temporal filter represented by _(t).
-nl

The first, strictly temporal loop, can be imvlemented exactly as in [3),

while the second spatial/temporal processor can be implemented using con-

ventional adaptive array techniques £6], [7]. Specifically, the matrix filter

• _(t) in Fig. 3 is replaced by a bank of transversal filters with tap spacing

T no more than 1/2B0 where B0 is the signal bandwidth. The array output

signal 1' (t) is filtered in a post-array lowpass filter and presented as

input to an adaptive algorithm, such as the least mean-square (LMS) algorithm.

A reference input a(t) can be obtained in a decision-directed fashion as the

quantity

_~ ~ B m(t-mTs te'; -(M+l/2)T <t<(M+1/2)T ,(40)m=-MA A A

where { I represents ML estimates from the output of the VA and T,O are
corresponding timing and phase estimates. The quantity r(t) represents an

estimate of the modulator/channel impulse response r(t) as obtained in the

first adaptive loop. Note that the VA must make use of the esti-

mated response Q_(t) in computing the quantity haccording to (23) which

is required in branch metric computations. Existing adaptive array schemes

generally assume that _-(t) can be approximated by a parallel bank of trans-

versal filters without any interacting terms. This is equivalent to assuming

,, •
that 0--(t) is diagonal . It is not clear how this assumption degrades poten-=:nn

tial performance although it is a reasonable assumption for wideband inter-

ference. We will not discuss this approach further since it is a relatively

straightforward application of existing techniques.

t This assumes that appropriate delays in the VA sequence estimator are
accounted for.

tt Note that in this case the beam steering network in Fig. 3 can be inter-
changed with the spatial/temporal filter, as is the case in most existing

• .adaptive array systems.
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The adaptive implementation of the scheme in Fig. 2 is somewhat more

interesting and apparently has not been described previously. Here we

assume that the filtering operation represented by 2'(-t) can be approxi-

'- mated by a network of transversal filters, each of length L with tap spacing

T no more than 1/2B0 seconds. Specifically, the system transfer matrix of

this approximating network is diagonal of the formt

EO- H(JW;12)
00

H(Jjw) =".)

where ji' i=l,2,...,N is an L-vector representing the weights of the corres-

ponding transversal filter such that
~QW e-JT -J (L-I)WT

H(Jw ; ) = ei+gi2e
-wT+"" e

• :- L

L 1 jij ) e

As-.noted previously, the beam steering network in Fig. 2 can then precede

the spatial/temporal processor. Let i!(t), i=1,2.... ,N represent the corres-I

ponding input to this processor and define the L-vectors

(t) J!tT). i=l,2,...,N (43)

Li! it-(I,-l)T)J

Finally, define the vector P'(t) of dimension NL as

t It can be shown that no loss of generality results from the assumption
of diagonal form.

11:., 1-17
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1(44

Then the output signal rr(t) in Fig. 2 is given by

_T

where

(146)

Similarly, the temporal filter B(t) is approximated by a transversal filter

Qf length 2L'4l with corresponding tap vectorl .. si .. v

* ~ The received signal estimate, corresponding to (40), is then

*The error signal i(t)=r(t)-a(t) is then formed with a~t) set equal to the

* decision-directed signal estimate of (147). At the sampling instants then

we have
e = e(MT+r)

cT_ _ (148)

and it is possible to choose both jand 3 to minimize the quadratic performance

criterion

J~j~) = {I~12) 19

m 49
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At this point standard stochastic gradient procedures, such as the LMS

.algorithm, can be applied to minimize (49) with respect to both j and .

The details remain to be worked out.

VI. Summary and Conclusions:

We have described a novel adaptive multi-element receiver structure for

ML sequence estimation in a spatially distributed interference channel. This

structure provides adaptive element weighting and simultaneous data demodula-

tion, phase tracking and bit synchronization. The structure differs from the

conventional approach where these functions. are all performed separately and

independently. A present weakness of the result is the assumption of Gaussian

interference. Hopefully this can be removed in future work. Nevertheless,

the present structure is interesting for the light it sheds on how an optimum

processor is implemented. In particular, the adaptive array weighting should

be combined with the modulation and/or coding into an integrated spatial/

temporal processor.

° I

-4
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Operation of the ML Sequence Estimator Employing the VA.
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PART II

REDUCED-SEARCH SOFT-DECISIOP TRELLIS

DECODING OF LINEAR BLOCK CODES

2-1



I. Introduction:

Several authors have devised decoding schemes for linear block codes which

utilize the channel measurement information contained in a real-valued decision

statistic available at the output of a receiver [1-[6]. However, most of

these algorithms are either unreasonably complex or are applicable only to

restricted classes of codes.

Wolf [6] has proposed an algorithm which has an interesting representa-

tion as a search for the maximum likelihood path through a trellis which can

be defined for a block code. This scheme applies the Viterbi algorithm (VA)

to perform the search and has been shown to perform maximum-likelihood decod-

ing. Unfortunately, the computational complexity of the VA increases with

the width of the trellis to be searched. In its application to the decoding

of convolutional codes, the VA becomes computationally unfeasable for codes

of constraint length greater than 10 or 12. There is a similar limitation

when the VA is used for maximum likelihood decoding of linear (n,k) block codes

over GF(q). The width of the trellis in this case can be as high as

(n-k)
q and the VA is too complex for many codes of even moderate length.

- This paper is concerned with the development of a reduced-search algorithm

which is, in a sense, a generalization of the VA. The complexity of this

algorithm is a function of several parameters and we demonstrate that the

algorithm gives performance close to the VA when applied to the block code

trellis defined by Wolf at the same time the complexity is significantly reduced.

Related algorithms have been applied in maximum-likelihood sequence estimation

on intersymbol interference (ISI) channels [10], [11].

II. Trellis Decoding of Linear Block Codes:

When applied to the maximum-likelihood decoding of an (n,k) linear block

code, the VA is used to search a trellis which is defined in terms of the

2-2
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parity check equations satisfied by the 2k code words of the code. The

decoder attempts to track the "state" of the partial parity check sum:

k,."' S(k) = z, h , k=0,1,...,n
r': i=l

Here, hi represents the i'th column of the (n-k) x n parity check matrix

H and zi is the i'th entry in a binary row vector z. To each sequence

zi, i=l,2,...,n there corresponds a sequence of parity check sums

1S(k), k=l,2,...,n.

We can use a trellis diagram to represent the evolution in time of

this sequence of parity check sums. The partial parity check sum can be

considered a state so that the trellis diagrams the transitions between

these states from one node level to the next.

. A trellis for a (5,3) code with parity check matrixH 1 0 1 0]
1 0 1 0 1 ,

* .is shown in Fig. 1. Each binary n-tuple traces a distinct path through

the trellis corresponding to a sequence of transitions of the parity check

states.

We know that for each of the 2k binary sequences of length n which are

in the code the corresponding sequence of parity check states must end with

the all zeros state, i.e., S(n)O since

T n
"- = I xh. 0

if x is a codeword.

Clearly, then, a path through the trellis corresponding to a codeword

must terminate at the all zero node at the final level.

2
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The VA operates by finding the path through the code trellis, correspond-

ing to a codeword, which maximizes the log-likelihood functional

L m{r) - log frj (Lx)

-where r represents the real-valued receiver output sequence and frI-_(.Ix

describes the channel transition probability mechanism. If we assume that

. the channel affects each transmitted symbol independently, the log-likelihood

functional becomes

n
L m 1r) log f(r i xmi)

m i=l

In the particular case o7 '-atched -filter reception of binary antipodal

signals transmitted over an additive white Gaussian noise (AWGN) channel, the

receiver output sequence is of the form:

r-. / + n. ; xi=O

s- /N 0  + n. x.=l, 1 1

where E is the signal energy, Y, !2 is the double-sided noise spectral density in

watts/Hz, and n i is a zero-mean Gaussian variate possessing unit variance.

III. A Trellis Searching Algorithm

We consider a section of a directed trellis of the general form of Fig. 2.

The full trellis may be very wide. In general, however, we will consider searching

a selected sub-trellis of the full trellis which has a much smaller width.

"2-4
I



We associate a distinct state Si(k) with each node at any given node level

k. Nodes at a certain node level are connected to nodes at the next level by

directed lines called branches. We denote the set of branches emanating from a

particular node Si(k) by rW(k) and the size of this set by LW(k). We sometimes

wich to consider a distinguished subset of ri(k). A subset of r.(k) will be

denoted as r!(k) and the size will be denoted by L!(k). Finally, each branch in

the trellis has associated with it a branch symbol x. (k) and a branch metric

d. (k). The quantities x,d and S are illustrated in Fig. 2.

For each node at any given node level k'it is possible to describe a path

incident upon the node by a sequence of branch symbols
X = (XoXl, ...,IXk-1)  I

where x corresponds to the branch travelled from a node at the j'th node level

to its successor at the (J+l)'st level. We also associate with this path a cum-

ulative path metric value d which is the sum of the branch metric values for

the branches in the incident path.

At a given node level k, we assume that we have stored a list of nodes.

The list also contains a branch sequence and cumulative path metric corresponding

to a selected incident path for each of the nodes on the list. This list for

a given node level k is shown at the left at the bottom of Fig. 2.

We now describe a pr, edure for stepping through the trellis to the next

node level, thereby extending the paths and creating a new list at level k+l.

' We do this by attempting to extend each of the paths on the back list (labeled

B in Fig. 2) to a new node which will then be placed on a forward list (labeled

F in the figure).

2-5
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,1 "For each of the nodes on the back list at level k, the following steps

are performed:

1. Choose a subset r!(k) of the set r (k) cf branches• -. 1 i

emanating from the node to be extended to nodes at

.4%. the next node level. This subset contains L!(k) branches.

2. Extend the path by traveling along one of the L(k)
I

branches in the subset r!(k) emanating from this node
1

- .- to a new node at level k+l. Update the cumulative

path metric by including the contribution from the

branch metric associated with the branch just extended.

3. Search the forward list F to determine if the new node is

already present. If the node is not present, go directly

to setp 5. If the node is present continue to step 4.

4. Compare the cumulative path metric just calculated with

the corresponding metric already on the forward list.

If the new metric is larger, go to step 5. If not, go

to step 6.

5. Extend the path sequence from the present node by adding the

branch symbol associated with the current branch to the path

sequence associated with the node under consideration. Re-

place the cumulative path metric and path symbol from the

node on the forward list with those just produced from the

transition from the node on the back list. This effectively

connects the node on the forward list to the node under con-

sideration on the backward list.

6. If all the L(k) branches emanating from the node on the back

list have not been exhausted, go to step 2.

2-6



The forward list will be complete after we nave rerfo.mec the extension

procedure for each of the nodes on the back 1ist. "t ..:t zme we 'urge all

but the M nodes with the highest path value. We can alsc reorder the list

any way we desire (e.g., in order of decreasing metric value).

Once the above steps have been performed at any given node level the

, algorithm is complete and we have proceeded one level further in the trellis.

The forward list becomes the back list and the process is repeated until we

*. have come to the end of the trellis.

This algorithm has some similarity to the(M,L)algorithm described by

U Anderson and Mohan [ 7 1. It is one of a class of tree searching schemes called

:: " n -k
breadth first algorithms. If M = a (we do not purge any nodes at any node

level) and we extend each of the branches emanating from the nodes, this algorithm

is equivalent to the Viterbi algorithm and will perforz true maximum-likelihood

decoding. We now demonstrate the application of the algorithm to soft-decision

" decoding of linear block codes and show how the channel reliability information

can be used to determine an appropriate subset of the branches to be extended

from each node.

_rV. Application to Soft-Decision Decoding of Binary Block Codess _.

The algorithm described above can be used to search the parity check trellis

defined previously. In this case the branch symbols are simply the transmitted

symbols with xi (k)=0,1. The branch metrics for binary antipodal signaling

in AWGN then become

d ij(k) = rk(_l)Xi'j

with rk representing the k'th component in the received real-valued n-vector

r=(rl,r2,...,rn). We also associate a real-valued vector a--(aCL, 2 ,..., 'Ln called

the reliability vector. These positive numbers give a measure of the
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reliability of the received symbols if the receiver were forced to make a

hard decision. Thus of a. is large, it is more probable that a decision
i

made by the receiver upon the transmitted symbol is correct. For Gaussian

channels, the magnitude of the real-valued matched filter output provides an

effective measure of the reliability of the corresponding hard decision esti-

mate. We can use this channel reliability information to aid in selecting a

subset of the parity check trellis to be searched. At the first k node levels

for an (n,k) linear code each node on the trellis will have 2 branches emanat-

ing from it. The width of the trellis is bounded by min{2 n-k,2 }.

As an example, the trellis for the Golay (24,12) code contains 212=4o96

nodes or states at its widest point. There is no advantage in using the VA

for this code since word correlation decoding gives the same performance with

about the same complexity.

If we receive a certain n-tuple r and several of the reliability numbers

are large, we may accept the corresponding hard-decision outputs as correct.

In terms of the trellis this means that at certain node levels we extend the

trellis along only the branch corresponding to the hard-decision receiver out-

put. At certain reliable node levels, then, the trellis does not grow in

awidth, since there will be only one branch emanating from each node. The VA

applied to a sub-trellis generated in this way is equivalent to correlating

the received vector r against a subset of the codewords. This set is generat-

ed by accepting the receiver hard-decision outputs for the symbols in the k-p

most likely information positions and allowing all possible combinations in

the remaining symbol positions. In this way, the decoder correlates

against a set of code words which all agree with the hard-decision estimate

in the most likely k-p information symbols but otherwise exhaust

- all other combinations of digits in the remaining positions. The size of

the subset of code words, and hence the complexity of the corresponding subtrellis,
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will be a function of the number of unconstrained information symbol positions

p. The choice p=k corresponds to true maximum-likelihood (ML) decoding provid-

ed M.=2 nk while the opposite extreme p=0 corresponds to simply accepting the

* receiver hard decision outputs in the k information positions.

The full algorithm proceeds by first generating a subtrellis by fixing k-p

of the most reliable information symbols. This subtrellis is then searched up

to the k'th node level, extending the M most likely paths at each node level.

Finally, after the k'th node level, the VA is applied to extend the surviving

paths to the final all zeros node and select a codeword.

The parity check trellis for the Hamming (7,4) code is shown in Fig. 3. An

* example of a subtrellis generated for this code is shown in Fig. 4. In this

case we have taken p=2 . The real received vector r is shown along with the re-

liability vector a and the corresponding receiver hard decision estimate.

*V. Computational Complexity:

Massey [81 has defined 3 quantities which are useful in the determination

of a trellis decoder complexity. The number of digit metrics, Nm, to be evalu-

* ated in order to compute path metrics is equal to the total number of digits on

all branches of the trellis. The number of metric comparisons, Nc, is just the

number of nodes in the trellis which have two entering branches. Finally, the

number of accumulators, Na, is equal to the maximum number of nodes or states

which must be stored at any given node level as the decoder progresses through

* the trellis. For standard maximum likelihood deocding of a given (n,k) lineat

* block code, Massey has developed the following bounds on these computaLional

•- parameters:nkl
N <2 n -k +  [2k-n+21-4 , (1a)

n-kN <2 [2k-n+l]-l (lb)

and N< 2 n - k (1c)
a7
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valid for k>n-k, or equivalently R=k/n>l/2.

It has been demonstrated in [8] that the trellis can be simplified

in certain special cases and the computational quantities N Nc, N corres-
m "t a

pondingly reduced. One method of simplification involves rearranging the

columns of the parity check matrix resulting in a nonsystematic code. It

is not clear, however, that this procedure would offer significant simpli-

*fication in the case of the longer, more practical codes. The conclusions

*then is that computational complexity is essentially exponential in n-k.

We now examine how the computational quantities are affected by the

trellis searching algorithm presented here. Consider the parameter N
aK When the complexity is constrained by M, it is clear that the number of

states can never exceed 2 M , since only M nodes are extended forward at

each node level. When the complexity is constrained by p, the trellis can

double in width at most p times. Therefore, the number of states can grow

to a maximum of 2p . Taking into account the original maximum likelihood

bound, and again assuming k>n-k, we have the result:

N <2 , (2)

with y= min(n-k, p, log 2M).

Next, consider the quantity N for the case k n-k. At node levels k,
c

k+l,..., n exactly one branch emerges from each node. Since all paths from

the nodes retained at level k must remerge to join at the final node, the

number of metric comparisons in this portion of the trellis will

be equal to one less than the number of states present at node

0 level k. Since we have constrained the maximum number of states

t Similar but less useful bounds are available for R<1/2.
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to be less than 2", the number of metric comparisons in the

tail of the trellis can be no greater than 2Y-1. Paths in the full trellis may

* also remerge at levels n-k+l,...,k. If we retain only 2Y states at any level,

it is clear that we can have at most 2
Y -1 remergences at the next node level,

necessitating 1 metric comparison for each. At these node levels then, the

number of metric comparisons does not exceed (2k-n)2Y -1 . The number of metric

comparisons within the entire trellis therefore satisfies:

N <(2'Y-l)+(2k-n)Y-i

- or the weaker bound

N <2y[2k-n+l]-l (3)

Finally, we consider the quantity Nm, the number of metric digit calcula-

tions. This is simply the total number of branches in the reduced state trell-

is. Since N is the maximum number of accumulators, the worst case occurs
a

when the trellis expands to its full width at the earliest node levels and

remains at this width until it is forced to close in the tail section. Under

these conditions, if 2Y is the maximum number of accumulators or nodes, the

trellis will have 2i+ branches traveling forward from nodes at level i up

to node level . At levels y, y+l,... ,n-y-i there will be at most 2.2y

branches traveling forward to the next node level. Finally, in the tail at

levels n-y, n-y+l,... ,n-1 there will be 2n- i branches traveling forward from

node level i for i=n-y,n-y+l,... ,n-l. This gives a total of

y-1 n-2y n1 .n-2y. i 2 i+i 2 ni 2 i+i Y+l2 + 2Y~ + 2 2 + 2Y~

i=o i i=n-y i=1 i

+n-2y=2 y+-4 + . 2Y+
I

i2=1

.- '.2-11
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metric computations under worst case conditions. Assuming 2y<n then we have

the bound

N <2 (l[2k-n+21-4 (4)

Comparing the bounds in (2)-(4) with the corresponding results in (1) it

is clear that the decoding complexity can be controlled through choice of M

and p to aboid the exponential dependence upon (n-k) associated with the full

trellis search. As an example of the use of these bounds consider the situa-

tion illustrated previously in Fig. 4 for the Hamming (7,4) code. A compari-

son between the actual computational complexity of the reduced-search algor-

ithm and the preceding bounds is provided in Table 1. Also included is a com-

parison between the actual values for the best nonsystematic implementation of

., this code using a full trellis search (ML decoding) and the corresponding

bounds predicted from (1). We feel that these bounds do provide a reasonable

indication of actual computational effort and indicate the potential computa-

tional advantages of the reduced-search trellis decoding algorithm when appli-

ed to larger more powerful codes.

VI. Simulation Results:

We have performed extensive simulations of the reduced-search trellis al-

gorithm on the R.P.I. Interactive Communication Simulator (ICS)[9]. This is

an extensive hardware-software system for interactive simulation of a variety

. of point-to-point communication systems. In addition to the decoder, the other

components of the system model included a binary equiprobable source, a block

t It should be noted that although there are 22 branches in the trellis of

Fig. 4, only 16 branch metrics need be computed since the branch metric
in the fixed positions are common to all paths and thus need not be com-

puted.

2-12
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encoder, a BPSK modulator and demodulator and an AWGN channel. To insure

statistical accuracy over the range of signal to noise ratios which were

7
simulated, 10 symbols were processed by the system for each test case.

The codes we chose for the simulations were the Hamming (7,4) and Golay

(23,12) perfect codes along with their extended versions, the Hamming (8,4)

and Golay (24,12). We discuss only the results for the extended codes. Re-

sults for the perfect codes are similar.

In the first set of simulations illustrated in Fig.'s 5 and 6, M was set

equal to t:ie maximum width of the trellis. In this case, no nodes are purged

from the liLjt at any node level. At the same time, p (the number of uncon-

strained information positions) was varied and a simulation was performed for

each choiceof this parameter. For the Hamming code, we have chosen p=0,1,2 ,

3,4. As indicated previously, the case p=O corresponds to simply accepting

the receiver hard decision outputs and thus the upper curve in the figure

represents uncoded performance. For purposes of comparison we have also dis-

played the performance of a conventional hard-decision algebraic decoder.

S'-This is a decoder whose estimate of the transmitted codewQrd is the code-

word at the minimum Hamming distance from the receiver hard decision vector z.

Note that for p=2 the performance of the trellis decoder is about .5dB better

than that of the conventional algebraic decoder, whereas p=3 gives perform-

ance nearly eaual to maximum-likelihood.

" For the Golay code, we have chosen p=0,3,5,7. The full trellis for the

Golay code as too complex to search within a reasonable time and therefore

the maximum-likelihood performance p=12 is not shown. We have included a lower

2-13



bound on correlation decoding (cf. [1]) for purposes of comparison. Note that

for the Golay code, the choice of P=3 gives performance nearly equal to the

conventional decoder.

In the second set of simulations (Fig.'s 7,8) we have set p to its maxi-

u value and have purged all but M nodes at each node level. For the Hamming

code, we have chosen M=1,2,4,8,16. For M=4 the trellis decoder performs about

.8dB better than the conventional decoder and M=8 gives essentially maximum-

likelhood performance. For the Golay code, we have chosen M=1,4,16,64,128.

In this case, 1416 gives performance comparable to the conventional decoder.

In the third and final set of simulations (Fig.'s 9,10) we have set the

value of M to a fixed intermediate value and varied p. A simulation was again

performed for each choice of p. For the Hamming code, we chose M=4 and p=1,2,3.

For the case p=3, the performance is essentially the same as in Fig. 8 for M=4.

For the Golay code, we chose M=64 and P=3,5,7,9. For P=7 the performance is

about the same as in Fig. 8 for M=64.

VII. Summary and Conclusions:

We have described a general algorithm which performs a reduced complexity

search of an appropriately defined trellis. This algorithm can be applied to

the decoding of linear block codes. Through computer simulation we have demon-

strated the tradeoff between computational complexity and bit error performance

for two such codes. Interesting research directions would be to develop explicit

performance bounds as a function of M and p and to apply the algorithm in the

decoding of convolutional codes.
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Reduced Search Algorithm Full Search Algorithm

m=4, p=2 iv,8, p=4s

Quantity Actual Values Bounds Actual Values t Bounds

N16 20 34 44s

N3 7 11 15
c

'N 4s1 8

Actual Values f~or best
nonsysteriatic implexmertation.

Table 1

Computational Bequirements for Soft-Decision

Trellis Decoding of Hamming (7,4) Code.
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NEW SHORT CONSTRAINT LENGTH CONVOLUTIONAL CODE

CONSTRUCTIONS FOR SELECTED RATIONAL RATES
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I. Introduction:

The use of Viterbi decoding and sequential decoding techniques to achieve

reliable communications has increased significantly over the past decade. As

a result there has been a commensurate increase in the need for good convol-

utional code constructions. In the past, much effort has been expended in

finding optimal, i.e., good in some carefully defined sense, low rate R=l/n

convolutional codes. In general, convolutional codes used in conjunction

with Viterbi decoding should possess a maximum free distance property, while

for codes used with sequential decoding the column distance profile property

is important (cf. [1). Some of the early optimal binary convolutional codes

of practical interest in zonnection with Viterbi decoding were reported by

Odenwalder [2), and Larsen [3). These were short constraint length convol-

utional codes with maximal free distance for rates R=1/2, 1/3 and 1/4. Later,

binary convolutional codes at these same rates were reported by Johannesson

[1] 4] possessing an optimum column distance profile. In each of these

cases the code constructions were determined by computer search methods due

to the lack of any analytical procedures for obtaining optimal rate R=l/n

convolutional codes. In particular, the codes reported by Larsen [3] were

found by a judicious choice of the code generating polynomials followed by

computer verification of their free distance.

In many applications, bandwidth restrictions are quite severe thereby

dictating higher rate R=b/n channel codes if effective error-control pro-

tection is to be provided. Unfortunately, very little progress has been made

in finding good convolutional codes for arbitrary rational rates greater than

1/2. Early work in developing the algebraic structure of high rate convolu-

tional codes aas initiated by Forney [5), [6]. Specifically, Forney developed

a linear correspondence between the states of a rate R=b/n convolutional

3-2



encoder with code generator matrix G and the states of a corresponding syn-

drome former HU. Here H denotes the transpose of the generator matrix

corresponding to an encoder of the code dual to the code generated by G.

However, Forney's results have stimulated only a very limited number of

rational rate code construction investigations. Generally, these investiza-

tions have centered on code rates of the form R=(n-l)/n. Paaske [7] has pro-

vided tabulations of short constraint length binary convolutional codes with

maximal free distance only for rates 2/3 and 3/4. Furthermore, Paaske's re-

"i sults were obtained by computer search procedures due to the unavailability

of strictly analytic methods. Reults of a computer search for systematic

convolutional codes with rates R=(n-l)/n for n=3,4,...,8 have been given by

Hagenauer [8]. These codes, which are used in conjunction with sequential

decoding, are good in the sense that they maximize a column distance function.

Another class of high rate R=(n-l)/n convolutional codes have been reported

by Wu [9]. These codes are convolutional self-orthogonal codes (CSOC's)

which are known to be threshold decodable. Wu has provided extensive tab-

ulations of CSOC's for n=3,4,...,l4.

A class of punctured convolutional codes of rate R=(n-l)/n have been

investigated by Cain, et al. [101 using computer searches. This class of

codes is of interest since the implementation of Viterbi decoders for high

rate convolutional codes is greatly simplified if the code structure is that

of a punctured low rate code. As an example, suppose a rate R=1/2 code is

used with every fourth encoder output bit deleted. This code will produce

three channel bits for every two information bits, i.e., it will be a R=2/3

code. Hence, the R=2/3 code was constructed by periodically deleting bits

from a R=l/2 code, or by puncturing the code. The advantage is that, after

4
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appropriate modification of the received bit stream, the Viterbi decoder

can be implemented as a R=1/2 decoder requiring only binary comparisions

at each decoder state. One disadvantage is that by puncturing a R=1/2 code

its free distance is reduced. We expect this to be the case, however, since

high rate convolutional codes generally have smaller free distance profiles

. than low rate R=l/n codes. The free distance df of a rate R=(n-l)/n con-

volutional code obtained by puncturing a code of rate R=l/n is almost always

equal to the bound for standard convolutional codes. However, in some cases

d for a punctured code is less than d for a standard code at the same rate
f f

and constraint length.

Recently, a new class of time-invariant binary convolutional codes have

been defined. Lauer [ll] describes the construction of some optimal partial-

unit-memory (PUM) codes. Here the encoders, at rational rates R=b/n, do not

*require full storage of the previous subblock of b information bits. The

codes are optimal in the sense of having maximum free distance for a given

rate and constraint length. Unfortunately, code constructions for ration-

al rates are only provided for two R=2/3 codes.

The purpose of this paper is to present good rational rate convolution-

al code constructions for rates R=(n-k)/n, k=l,2,... ,n-l with n=2,3,...,8

and constraint lengths K=3,h,...,8. A tabulation of codes at these rates

will significantly extend the existing results of rates 2/3 and 3/h for

standard convolutional codes [7]. The rational rate codes tabulated here-

in are short constraint length, nonsystematic, binary convolutional codes

with maximum free distance for use with Viterbi decoding.
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II. Preliminaries:

Figure 1 illustrates a typical nonsystematic binary convolutional encoder.

Here a convolutional code with constraint length K and rate R-b/n is represent-

ed as a shift register of length K coupled with n multi-input modulo-2 adders.

A group of b information bits are shifted into the shift register and the out-

puts of the n adders are sampled and transmitted sequentially. The code it-

self is determined by the connections between the shift register stages and

the modulo-2 adders. All codes in the sequel will be specified by n connect-

ion vectors, one for each adder, and denoted pl,2 .. The j'th component

of t_ is a 1 if stage j of the shift register is connected to the i'th adder,

otherwise the j'th component is zero. The code connection vectors are usual-

ly given in octal notation and are right-justified.

The criterion of goodness employed here is that of maximizing the free

* distance of the code at a specified rate and constraint length. Hence, it

is desirable to make use of an upper bound on the free distance, or unre-

* stricted minimum distance, of a confolutional code. For rate R=/n codes an

upper bound has been given by Heller [12]. This bound has been obtained by

utilizing the fact that a terminated binary convolutional codes with L inform-

ation bits is a group code. For arbitrarily large L the bound is defined

accoridng to dfLi - 1)nJ ,1
df<min -- (K+-I)n (i)1<2. 2 -1l

where [x] deontes the largest integer less than or equal of x, and K is the

code constraint length. Odenwalder [2] has shown that if dH is odd, then the

- bound of (1) can sometimes be improved. In particular, it has been shown

that if (1) is optimized with Z=h and the inequality given by

3-5
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d <2- {n(h+K-l)-l+2l -h } (2)
d {n2-1-1

is not satisfied, then d may be decreased by one. That is,
H

df (3)

The improved uDer bouna has been found to be very tight a, small constraint

lengths.

A modified version of the Heller bound (1) is used to upper bound the

free distance of a rational rate R=b/n convolutional code. In terms of the

code parameters b, n and K the bound is given by

2i--
•df
) df mi (K+i-b)n

Ili 2 2-- )b "Y(4

where, [xJ again denotes the largest integer less than or equal to x andI i if K<2b-i
"2-.[ I=(5)

;= b if K>2b-i

The two conditions on I described in (5) have been found to be necessary

becauee when the shift regi ster length K is not large enough to retain a

group of b information bits for more than one shift cycle the distance

properties of the code are significantly reduced. If d. is odd, the bound

in (4) can sometimes be improved in a fashion similar to that described

earlier. If (4) is optimized with i=h and the inequality now given by

2h I

dM 4_h- { (h+K-b)-i+2l-h  (6)
2-1

is not satisfied, then dM may be decreased by one. That is, for rate R=b/n

binary convolutional codes
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dy.AM-l (7)

The bounds described above will be used exclusively in the search for good

codes.

III. Code Search Procedure:

SThe procedure used to find new rate R-b/n codes is an extension of ttie

search technique outlined by Odenwalder [2] for rate R=l/n codes. This pro-

cedure is best described in terms of a state diagram and code trellis approach

(cf. [13] for details). The convolutional encoder of Fig. 1 can be considered

K-ba finite-state machine with 2 states. Hence, a rational rate Viterbit decod-

" er will have 2K -b states. Furthermore, b information bits give rise to 2 b-1

possible non-zero input patterns which may be input to the shift register. In

what follows we will assume that the all-zero information sequence is encoded

and transmitted across a perfect channel with a rational rate Viterbi decoder

" being used to decode the received data. The search strategy will be to find

the minimum weight (Hamming distance) of any path through the code trellis

* which diverges from the all-zero path at some point and remerges at any later

time. Such paths are called adversaries, wherein the minimum weight of these

adversaries is simply the minimum free distance d of the code.v

In the case of rate R=/n codes, the search process was started by re-

stricting the first decoded bit to be a one. Then at any time i>K the Viterbi

K-1
- decoder will retain 2 paths. Each path will be the minimum weight path

* which diverges from the all-zero state at some point and terminates in a part-

icular state at time i. For large enough i the minimum free distance of the

code is equal to the weight of the path which terminates at the all-zero

* state. Additional information such as 1.) the number of such minimum weight
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-oaths (adversaries) which terminate in each state at each level in the trellis,

and 2.) the number of bit errors that these paths represent is also collected.

1 For a rational rate R=b/n code the above search strategy is employed,

however, the search for the minimum free distance must be done for each of

K.: the 2b-I possible non-zero input information bit patterns. Hence, a total

of 2b- minimum free distance paths through the trellis must be found. A

sequence of free distances {dfl, dfd2 ... dfj2bl, one for each non-zero

inpuz pattern, is found for a rate R=b/n code. By definition the free

distance d of the code is taken to be the tinimum over all possible input

patterns, i.e.,
df min {d df,..., bl} 8)

It is particularly illuminating at this point to consider a state

diagram interpretation. For example, Fig. 2 illustrates the state diagram

for a R=2/3, K=4 convolutional code with a specified set of connection

vectors. There are four decoder states and three possible non-zero input

bit patterns. Starting from the 00 state, the first input bit pattern 01

leaves the 00 state. There are two minimum weight paths at distance 5 with

a total of three bit errors. However, for input pattern 11 there is one

' nath at a minimum weight of 3. Hence, by (8) the free distance of the code

in Fig. 2 is d,=3.

A modified rational rate Viterbi decoding algorithm constructed 
by Wismer

[14] was used to discover good rational rate convolutional codes. A limited

computer search of rational rate codes was performed to obtain good code con-

a structions, i.e., code connection vectors (CCV's), for specified rates R and

constraint lengths K. The search procedure is outlined as follows:

I.
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Step 1.) Choose rate R=b/n and constraint length K. Obtain a bound on

the free distance df of the code from (4) and the sequel.

Step 2.) Set the CCV's {gl,g 2 .... gn
} to some initial values.

Step 3.) Apply the algorithm and obtain the sequence of free distances

{df 1l,dfl2,.., df 2b_1 } , the number of adversary paths and the

corresponding number of bit errors in the paths.

Step 4.) Iterate on the CCV's collecting all codes which meed the bound

for df.

Step 5.) Eliminate all catastrophic codes from the set of candidate codes.

Here a code is catastrophic (cf. [151) if, in terms of its state

diagram, there is a closed-loop zero-weight path from some non-

zero state back to itself.

Step 6.) Choose the set of codes (CCV's) with the highest average value

- b
df amoJng all 2 -1 input patterns; here we define

2 b_l
af = df (9)

2b-1 il fli

Step 7.) If the code set of Step 6 contains more than one code, only

those codes with the smallest number of bit errors among their

adversaries at the minimum distance plus one were retained. If

more than one code still remained, the adversaries at the minimum

distance plus two were retained, etc.

The codes determined in this fashion are the best code for that rate and

constraint length in that the free distance has been maximized and the number

of bit errors in the adversaries have been minimized. Results of computer

searches for codes at rates R=(n-k)/n, k=l,2,...,n-l with n=2,3,... ,8 and

3-9
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for constraint lengths K=3,4,... ,8 are tabulated in Tables 1-18.

Results for low rate codes R=1/5,1/6,1/7 and 1/8 indicate that these

codes have good error-correcting capability due to their very large free dis-

tances (cf. [16]). These explicit low rate code tabulations are useful in

that they do not appear in the literature. Results for higher rate codes in-

4
dicate that the free distance is markedly inferior to the lower rate codes

. Increasing the constraint length K beyond 8 will improve the distance profile

'* of these codes, however, the complexity of the search procedure increases ex-

ponentially with K. It is noted that several rate 2/3 and 3/4 codes have "teer.

found which have a higher df than those codes reported by Paaske [7].

IV. Performance Evaluation:

Bit error probability performance bounds for rational rate convolutional

codes can be obtained using a union bounding technique (cf. [131 for details).

The bound for rate R=l/n codes on memoryless channels can be expressed in

terms of the code generating function T(D,N) as

. dT(D,N (10)
b-" 0 dN N=lD=D o

where the constants K and D depend upon the particular code employed, the
0 0

modulation strategy in use and the channel parameters. Evaluation of the

derivative of the code generating function is given by the power series

expansion
dT(ND) = . k (11)

dN N=I k=df

where c k represents the total number of bit errors in all the adversaries

, * t Recall that for rate R=b/n codes d is defined according to (8) which is
f

a rather pessimistic indication of the code error correcting capability.
For many input patterns df1 i can be much larger than df.
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which differ in exactly k symbol positions from the correct path. For a

rate R=b/n code, one branch corresponds to b information bits and the bit

error probability is then

"-~ Pb, P (12)

-b b mibIm (

where P. is the conditional probability of a branch error given input

pattern m, F is the corresponding a priori probability, and M=2 1 correspond-

ing to the nu:ber of non-zero input patterns. Each of these patterns give

rise to a minimum distance dfim and a set of coefficients c,1  so that,

corresponding to (10) and (11), we have the bound

t ' <K ctImDO (13)

I 0 1=df m
fin

It follows that the bit error probability can be bounded according to

i MA. , o£P (lu)
Pb~ ~ 0 !K0  c£[mD 0 j
b b 0M=l L=d flm  0 m

b
where it is usually assumed that P =1/(2 -1), i.e., that input patterns to the

encoder are equally likely. For the particular case of BPSK modulation on the

AWGN channel the constants are given as

and 
0 0

(15b)

4 where Eb/N0 is the energy per information bit normalized to the single-sided

noise spectral density N0 watts/Hz.
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Code performance evaluations are provided in Table 19 for selected

rational-rate convolutional codes at various channel signal-to-noise ratios

(SNR) of practical interest. Table 19 provides both the computed bound (14)

- on bit error probability Pb' and that obtained by simulation using a rational
°"

-. rate Viterbi decoding algorithm together with BPSK modulation on the AWGN

channel. The matched filter outputs were uniformly quantized to 3 bit accur-

acy. Results indicate performance within 0.2-0.5dB of the bounds which, of

course, assume infinitely fine quantization. This is entirely consistent with

simulation results described in [16].

V. Summary and Conclusions:

Tabulations of selected rational rate convolutional code constructions

have been provided. These binary short constraint length codes were obtained

by a limited computer search using a modified rational rate Viterbi decoding

algorithm. The codes are best in the sense that, for a given rate and con-

straint length, the reported code possesses the maximum free distance profile

and the minimum number of adversaries in the weight spectrum. An explicit

expression has been provided for computing bounds on the bit error probabil-

ity directly from the weight spectrum of a specific code and the channel para-

meters. We have shown through simulation that this bound is quite useful in

describing code performance.

The codes reported herein have immediate application in the study of com-

bined source-channel coding in the context of image transmission [17], [18].

In addition, these codes are expected to have a number of applications in

coding for burst or impulsive noise channels [19].
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Constraint :ree Distance
Code (Octal)

Length, K achieved I bound
I?

3 3 6 2 2 2

h 17 06 15

iiil5 33 15 22 h

6 27 75 72 5 6

7 177 055 112 6 6

8- 236 155 337 7 7

t Codes found by Paaske [7 3.

Table 1

Best Rate 2/3 Convolutional Ccdes

ConstraintCode (Octal) Free Distamce

Lenth. K !achieved i bound
4i 13 15 02 1i i 2 2

5 36 214 32 07 3 3

6 13 25 61 47 '4 '4

7 127 o45 106 172 L '4

8 045 124 216 357 5 6

Table 2

nest Rate 3/L Convolutional Codes

-.

Ii
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Constraint CoFrOea)e Dlistance
_________Code (Otl _______________ achieved b oj-d

3 7 7 7 5 5 13 13

417 17 13 15 15 16 16

5 37 27 33 25 35 20 20

6 75 71 73 65 57 22 22

7 175 131 135 135 !L7 25 25

8 257 233 323 271 357 28 1 28

Table 3

Best Rate 1/5 Convolutional Codes

Constraint Coe( t)Free Distance

Length. K 1achieved bound

3 3 3 6 6 2 4 4

J4 17 07 11 12 04 6 6

5 12 12 31 27 37 8 8

6 27 71 52 65 57 10 10

7 071 166 112 055 177 11 11

8 247 366 171 266 373 12 12

Table 4

m.est. Rate 2/5 convolutional Codes
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Const~ai~t Code (Octal.) . Fe ~t
Le ,-h 2 Jachieved I bound

14 1T' 03 o6 12 0-' 3 3

5 37 15 26 13 314 14

635 23 75 61 47 5

7 I0314 127 0o45 106' 172 6 6

8 3314 0o414 1214 2106 357 j 7 7

Table 5

Best Rate 3/5 ConvolutionEC. Codes

Constraint Coe(ca)Free Distance

Ler'h K achieved Lbound

5 13 014 11 26" 36 2 2

6 67 15 26 52 57 2 3

7'013 023 056 132 .7'- 3 14

8237 2714 156 255 33-7 3 14

All d =L codes found were catastro-ohic.

Table 6

Best Rate 4/5 Convolutional Codes
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Constraine Code (Octal) Free Distance

Length. K _achieved b bond

3 7 7 7 16 16
7 5 5

17 17 13 20 20
13 15 15

5 37 35 27 24 24
33 25 35

6 73 75 55 27 27
65 47 57

7 173 151 135 30 30
135 163 137

8 253 375 331 3L
235 313 357

Table 7

Best Rate 1/6 Convoluticnal Ccdes

Constraint Free Distance
Code (Octal)nacieved bcnd

6 55 05 1 2 2
20 02 76

7 025 071 123 2 3
046 111 175

8 342 362 065 3
116 213 377

*Table 8

Best Rate 5/6 Convoluticnal Codes
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Constrai,:m. - sta.r:eCode (octE:I)
':,e en rth. b acheve ond i

7 7 7 7 18
5 5 5

17 17 13 13 23 23
13 15 15

- 35 27 25 27 28 28

33 35 37

6 53 75 65 -' 32 32
47 67 57

7 165 1L5 173 135 36 36
135 147 137

275 253 375 331 40 40
235 313 357

Table 9
E est Rate 1/7 Czn:-ul-_ Codes

oConstrant Code (OcFa!) Iree Distance

Length. K _achie7.ed i bound

3 7 3 c 6 6 6K.,6 2 2

4 05 06 12 15 9 9
15 13 17

5 11 36 32 12 11 11
23 35 37

6 33 55 72 47 14 14
5 53 75

7 073 132 071 166 16 16
112 055 177

4 8 312 125 2L7 366 18 18
171 266 373

Table 10
Best Rate 2/7 Convolutional Codes
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Constrai.t Free Distance<.. Code (Octal)

Lenxh. K !achieved bound

4 17 13 16 02 4 4
14 o4 10

5 o6 24 15 13 6 6
26 34 37

6 45 21 36 62 8 8
57 43 71

7 166 055 034 165 8 8
122 061 057

8 245 216 334 o45 10 10

124 216 357

Table 11

Best Rate 3/7 Convolutional Codes

Constraint Code (Octal) Free Distance

Length  K achieved boitund

5 13 07 31 23 4 4
25 35 37

6 11 14 15 67 4 4
26 52 57

7 115 010 013 023 6 6
056 132 174

8 130 067 237 274 6 7
156 255 337

Table 12

Best Rate 4/7 Convolutional Codes
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Constraint Code (Octal) Free Distance

Length, K achieved F bound
6 36 20 05 55 2 2

02 ii 76

7 025 iil 172 147 3 3
156 122 177

8 026 034 270 065 4 4
116 213 377

Table 12

Best Rate 5/7 Convolutional Codes

Constraint I Free Distance
Code (Octal)

Length. K [achieved I bound

7 003 005 010 C21 2 2
041 101 176

207 111 123 252 23
345 261 336

Table 14

Best Rate 6/7 Convolutional Codes

3-23
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Con -i

Constraint Free Distece
Code (Octal)Lenth Km achieved I bound

3 7 7 5 5 21 21
5 7 7 7

4 17 17 13 13 26 26

13 15 15 17

5 37 33 25 25 32 32
35 33 27 37

6 57 73 51 65 36 ( 36
75 47 67 5.7

7 153 ill '65 173 0 hO
135 135 147 137

8 275 275 253 371 45
331 235 313 357

Ta'ble 15

Best Rate 1/8 Convolutional Codes

Constraint Code (Octal) Free Distance

SLength, K ... chieved bound

4 15 12 OL 14 I 5
02 16 13 17

5 05 06 24 15 7

13 26 34 37
6 15 42 23 61 8 8

51 36 75 47

7 132 166 055 034 10 !0
165 122 061 057

8 " 274 045 124 216
357 245 2:6 334 11. 12

.Partial Search Table 16

Best Rate 3/8 Convolutional Codes
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Constraint I oe(ca)Free Distance

Lenxth. K _________ ____achieved Ibound
6 53 6o 02 55 3

05 11 76 36

7 076 025 122 Ill ~ 4 L
056 172 1147 177

3 20 026 23 031455
116 270 065 377

Table 17

Best Rat~e 5/8 Convolutional Codes

Constraint Coe(Otl Free :D-s~pa:ce

.:ength, K ?_______________ chieve( bou-d

8 003 0014 O11 020 2 I 2
0141 100 201 377

Table 18

'Best Rate 7/8 Convolutional Codes
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R=2/3, K=4/

*!  Code
3dB 4dp 5

Computed -3xO'i.hi~~1SXO7.31O l.! x_10 .5!-xL0 - '
Bound', P

Simulation

Result, Pb 1.03xl0 2  2.59x1O- 3  5.46xi0 -

R=3/4, K=6

Code
3dB 4dB 5EB

Computed 3.53x10- 3 2.35x- O -.15x20-

Bound , Pb

Simulation
-2 ..3

"esut 1.80xlO-  2.9!x10 -  !.72x--CResult, P b

T R=l/5, K=4

Code
3dB [ 5dB

Computed 1.50x10- 3 2.00x10 1.80,-0-5

Bound T 'b

Simulation• . [?2 .11 xl - 3  k o x 4  2 . 0 5

Result, Pb 2.llx103  4.o8x10 2.53xlO

b_
Computed Bound Evaluated from Eqn. (!4),with P =1/(2 1)

m

Table 19

Performance Evaluation for Selected Rational Raee
Convolutional Codes; Viterbi Decoding on an AWG.:
Channel Employing a BPSK Modulation Strategy.

3-26

"l: - J



°'"

U

PART IV

MODELING AND ANALYSIS OF SELECTED RECEIVER PERFORMANCE

IN IMPULSIVE NOISE CHANNELS
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I. Introduction:

A considerable body of knowledge exists concerning the performance of

digital communication systems operating on the additive white Gaussian

noise (AWGN) channel (cf. [11-[41 for comprehensive treatment). The major

impetus for this concentration on the AWGR channel has been the justi-

fication of the Gaussian model on physical grounds for a large number of

important applications; the deep space channel most notably. No doubt, the

comprehensive coverage in this case has been made possible by the analytical

tractability of the AWGN model. In an increasing number of important appli-

cations, however, the Gaussian model provides an entirely inappropriate

description of the prevailing noise environment. A number of such appli-

cations include: communication systems operating in the ELF/VLF frequency

range; data transmission on the switched telephone network; wideband FM

systems operating close to or below threshold; VHF/UHF communication systems

operating in the vicinity of large metropolitan areas; HF and Troposcatter

long-distance communication systems; and military communication systems sub-

Ject to wideband jamming.

While the noise producing mechanism is decidedly different in each of

the above examples, in each case the noise environment can be described as

a linear combination of a Gaussian and an impulsive noise process. This is

a fairly interesting class of random processes and, as indicated above,

rather rich in practical applications. Furthermore, there is ample justifi-

cation for this model on both physical and mathematical grounds. Finally,

E: with some assumptions on the statistics of the impulse process, this class

of random processes possesses a certain degree of analytical tractability.
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K This paper then is concerned with the modeling and analysis of the

error probability performance of selected modulasion szrategies operating

in narrowband impulsive noise. A generalized irpulsive noise model is

described which consists of a linear combination of a narrowband shot noise

process and AWGN. The low-density shot noise is generated by exciting a

fixed linear dynamical system by a stationary point process (s.p.p.) de-

scribed in terms of its interarrival distribution. We consider the part-

icular case of Gamma distributed interarrival times. Some of the low-order

statistical properties of this model are described in conveniently parameter-

ized form which allows calibration to a wide variety of applications, such

as described above.

The receiver structures considered consist of a conventional data demod-

ulator, implemented as a linear matched filter, preceded by nonlinear front-

end processing. Performance results are described for several modulation

strategies including binary coherent phase-shift keying (BPSK), differentially

coherent phase-shift keying (DPSK), qoaadrature phase-shift keying (QPSK),

binary noncoherent frequency-shift keying (BFSK), and coherent minimum shift

keying (MSK). These results are carefully parameterized by the channel and

receiver characteristics. Analytical results are provided where possible,

otherwise we have made extensive use of computer simulation results obtained

on the R.P.I. Interactive Communications Simulator (ICS) as described in (5].

This is an extensive hardware/software system allowing realistic and flexible

simulation of a wide variety of point-to-point digital communication links.

This paper is organized as follows: We describe the channel signal and

noise model in Section II, followed by a treatment of selected low-order

statistical properties of the noise model in Section III. This latter

4-3
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information is useful in calibrating the assumed noise model against real-

world impulsive noise situations. We do not attempt such a calibration

here but rather provide a careful parameterization of the problem which

hopefully can be applied to a wide variety of impulsive noise environments.

A comprehensive treatment of the performance of linear matched fi-lter re-

ception in impulsive noise is provided in Section IV. These results illus-

trate both quantitatively and qualitatively the severe degrada-ion in per-

formance due to small amounts of impulsive noise. In Section V we demon-

strate the effectiveness of selected nonlinear receivers in this environ-

ment. The receiver structures here consist of linear front-end processing

together with selected zero-memory nonlinear (Zv2L). devices motivated by opti-

mum weak signal results. A summary and conclusions can be found in Section VI.

II. Channel Signal and Noise Model:

In what follows we make extensive use of complex narrowband representa-

tions of all signal and noise processes. Specifically, the received signal

is given by

r(t) = ,2Re{1(t)eJ
2
1Tfct) , (i

where f is an assumed known carrier frequency in Hz, and 2(t)=r c(t)-jr s(t)

is the complex envelope expressed in terms of lowpass waveforms r (t) and
c

r (t) representing the inphase and quadrature (I/Q) components, respectively.

The complex envelope k(t) is furthermore assumed of the form

!::.9( ) t) + fl(t ) ,(2 )

where 9(t) is the complex envelope of the received signal component and f(t)

is a complex noise process representing the non-Gaussian impulsive noise

environment. We consider each of these components separately.
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A. ChanneZ SZinat ModeZ: We assume the signal ener - is giver by

f" sl (t)i2dt , ()ES=0

where T is the channel symbol (baud) interval. Furthermore,we restrict

attention to digital signaling formats such that 9(t) has the representation

E 1
[(t) = u [ClUc(t-2kiTs-')+jC2 u (t2kiTs-T)]e e . (4)

s~ i l'ic S 2iss

Here, depending upon the modulation strategy employed, u (t) and u (t) are

appropriately defined baseband waveforms modulating the I/Q rails. Similar-

ly, the auantities C I  C, depend upon the binary data secuence {x.)
' 2,i

9- to be transmitted in a manner specific to the modulation strategy in use.

The quantity k in (4) assumes the values 0 or 1, with the choice k=l gener-

ally corresponding to the case of staggered overlapping baseband waveforms

as in MSK. Finally, the quantities T and e in (4) are, in general, random

timing epoch and phase offset, respectively. In what follows we neglect the

effects of symbol synchronization and phase tracking errors, although it is

expected that in practice these effects will have a profound influence on

overall system performance.

Some specific examples of digital modulation formats which can be ex-

pressed in the form (24) are provided below. A summary of such representa-

tions is given in Table 1.

CoheAeint BFSK: Here the complex signal envelope is of the form

§(t) N x uo(t-iTs-T)ee (5)
T i

t We specifically restrict attention to equal energy signaling alphabets.

t In what follows we assume xi=±l.

4-



where the binary data sequence {x.l assumes values ±1, and u (t) is the

unit pulse waveform

u(t) o ;-T /2<t < Ts /2

0 elsewhere, (6)

Thus, 9(t) in this case is of the form (4) with C =xi,C 0,k=0, and
l'ii 2,i

u (t)=u0 (t) while u (t)=0.

NoncohAent BFSK: In this case, again assuming xi=±= , the complex signal

envelope is given by"L ES
11 ()Z u tiT- + xu tsT-" eje.

T [ ( (7)i

where' {ei} is an independent and identically distributed (i.i.d.) sequence

uniformly distributed over [-,]. The baseband modulating waveforms are

now given by

u (t) = cos(6wt/2)u0 (t), (8a)

andadus (t)=sin (AWt/2)u 0 (t) ,(8b)

with u0 (t) described by (6). Here. Aw is the tone spacing in radians/second,

and is a multiple of 27/T to insure orthogonality. The instantaneous radian

5

frequency is then 27f c±6w/2 during successive baud intervals. Again,§(t) is

of the form (4) with C ei C .=x.e i k=0, and u (t), u(t) defined
l-i 2,2. 1 c 5

by (8).

Cohe/Lent QPSK: The complex envelope of the transmitted signal is now of the

form

"(t) u. (t-iT T)+Jx 2i+lus (t-iTs-T)]eie (9)

Without the sequence {e.}, as described here, the phase could be estimated

on the basis of past transmissions thereby violating the assumption of non-

coherent reception.
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-where in this case

uc (t)=us (t)=(1/V'2)u 0(=) (10)

Note the factor 2Eb, where Eb is the energy per bit, since now two symbols

. are transmitted for each channel use. The QPSK signal can be considered

°.the sum of two independent BPSK signals in quadrature. Clearly,§(t) is

of the form (4) with Es= 2Eb, Cl,i=x2 i , C2 ,i=x 2 i+, k=0, and uc(t), us(t)

given by (10).

Coheet. MSK: The complex envelope of the MSK signal can be represented

in the form

j[ .a~(t) = xict-2iTs-T)+Jx i~Us -2iTs-))]ee, (i

Ss I

where now

u c(t) = cos(rt/2Ts)u6(t) , (12a)

and

us (t) = sin(irt/2T )u6(t-Ts) , (12b)

with u'(t)=u0(t/2),i.e.,
.u..(t) = ; -T <t<T

A-.t 0 elsewhere 
(23)

Representation in the form (4) is rather obvious where we note that now

k=l is required.

S. Channe2 No 6e Modet: The complex envelope fi(t) of the additive noise is

assumed modeled as a linear combination of a generalized shot noise process,

typically low density , and WGN. In particular,

where w(t)w c(t)-jws(t) is a zero-mean complex WGN process with I/Q components,

w c (t) and ws (t), respectively, mutually independent lowpass WGN processes each

By low-density we mean that the interarrival times of the impulses are
relatively long compared to typical impulse durations.

4-7
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possessing double-sided noise spectral density IN 02 watts/Hz. The shot noise

*. component (t) accounts for the relatively infrequent high-level and time-

resolved impulse noise hits due to atmospheric discharge phenomenon, or vari-

ous contributions due to man-made noise or pulse jamming. The Gaussian noise

*component w(t), on the other hand, is due to a combination of front-end noise

and the larger number of low-level and overlapping impulse hits. The latter

- contribution is expected to exhibit Gaussian behavior from central limit

theorem considerations.

The shot noise component can be modeled as the output of a linear time-

invariant filter excited by a complex amplitude modulated impulse train or

* .point process at its input. The filter generating the complex shot noise

process :(t) is assumed to possess impulse response h(t), or equivalently

system transfer function H(s). A block diagram of the channel noise model

. is illustrated in Fig. 1. The impulse response h(t) will in general be com-

plex possessing an inphase component hc (t) and a quadrature component hs(t).

The complex input 1(t) to the linear filter generating the shot noise com-

ponent is assumed of the form

N(t)m (t) = i6(t-t i) (5
• i-i"i=l

Here {a} is an appropriately defined complex i.i.d. weighting sequence and

{N(t), t>O} is a point process, in particular a counting process

whose event times are described by the sequence {t.). We will be particularly

interested in stationary renewal counting processes possessing Gamma distri-

buted interarrival times with probability density function (p.d.f.)

v-1
f(x) =x exp{-x/a} ; x>O , (16)
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where v>l, and the parameter B is defined according to =l/) X with X>0 fixed.

The quantity X represents the average number of events Der unit time. This

quantity will generally be specified in units normalized to the baud duration

T seconds. Specification of the two parameters v and XTs, then, completely'S. S

defines the point process {N(t), t>O).

For example, if v=l then

ii -if(x) = Xe - X  ; O(7)

This is the exponential distribution. In this case, {N(t), t>O} is Poisson

with X the average number of hits per unit time. Another special case is

obtained by letting v- while holding X fixed. The result is

f(x) = 6(x-l/) (18)

In this case, the impulses are periodic with rate X per unit time. By intro-

ducing the class of driving point processes described here, we have a conven-

iently parameterized impulsive noise model which includes these two extremes

as special cases. The class of point processes {N(t), t>O), and hence a(t),

is easily generated on a digital machine.

In what follows we will assume that the complex impulse amplitudes are

of the form ai=Rie-Je i with {Ri) an i.i.d. sequence possessing common p.d.f.

f (.), while {ei} is likewise an i.i.d. sequence uniformly distributed over

[_-1Ttl. Although many choices for ' r(.) are possible, we will restrict

attention to two which are specifically motivated by related ELF/VLF noise

modeling work [9]-(12]. The first choice is the power-Rayleigh or Wiebull

distribution with

f r(R) = R L-  exp{-(R ; >o, (19)

R~0

where the characteristic exponent a lies in the range O<c<2 and R is a
_-'0

scale parameter given by

"-" 4-9



:. r~i+2/ I) (20)

Another useful choice is the lognormal distribution with

f (R)= exp ..... . ; R>O (21)
:..' r Y27ro0R2( -

Here u and a2 are the mean and variance, respectively, of a Gaussian variate

g for which R=e In this case, for fixed value of , it is convenient to

describe the scale parameter in terms of the quantity

.-. E{R 2 }

Vd= lO 0Z I .33 2  
(22)

These two distributions are sufficiently general to exhibit the broad-tailed

-. distributions typical of many observed impulsive noise situations.

Under the preceding assumptions, it follows that the I/Q components of

the shot noise process can be generated as illustrated in Fig. 2 according to

N(t)
Y c(t )=  R Ri h c(t-t i)cose i-h s(t-t i)sine ill (23a)

and
",,,' Ys~Nt) Ri [hs (t-tics h (tt) sinei  (23b)

YS S, i l

Here h C(t) and h s(t) are, as described previously, the I/Q components of the

complex impulse response function ht). We will assume tha. h (t) and h (t)
c s

are both equal to the same impulse response function h 0 (t). Several choices

for h (t) are possible. For example, the simplest choice is the pulse wave-

form of duration T seconds as illustrated in Fig. 3. The corresponding im-c

. pulse response is

h0 (t) = U-1 (t)-u-1 (t-T) , (24 )

where u- (t) is the unit step function

l.

. . . . .4-10



ht rpo eTbU_l t ogte (25)

Generally it will be the case tha XT<< so tha z the resulting shot noise

:.process is truly low-density. Other choices of characteristic pulse shape

n (t) are provided in Table 2together with some other pertinent parameters

to be described in hewhat follows

'"' Finally, the last component of the impulsive noise model to be specified

is the quantity 7Trprsnigth oe

Y 2 f'() 2 (26)
• 0

which represents the ratio of the mean-square value the shot noise ompond n -

ent to the double-sided noise spectral density of the AWGN component. The

units of y2 are in Hz, or equivalently sec -I  In what follows we will be

." more interested in the dimensionless quantity y2T s , representing the power

in the shot noise normalized to that of AWIGN component when measured in a

double-sided noise-bandwidth equal to the baud rate fs=l/Ts.

For a fixed choice of model parameters the scale parameters associated

with the amplitude p.d.f. fr(.  can be adjusted to achieve a specified value

of y2T . In particular, it is easily shown, following the approach in [13)-~S

[15), that the stationary input point process t(t) described by (15) and the

sequel possesses power spectral density S (w)=XE{R2) independent of the

value of v. It follows that the power spectral density of the low-density shot

noise process is given by

s "(w) 2 X I 0 (j=)2E{R 2) (27)

from which we obtain

E{Iy(t) 2 )=I4XBIH0(0)12E{R 21 (28)

i -l
, 4-11



Here, L fl HJw) 2 dw

B- (29)
21H 0 (0)11 2

is the equivalent single-sided rectangular bandwidth in Hz and is provided

in Table 2 for each of the characteristic pulse shapes considered. Also

provided in Table 2 is the mean-square value E{I (t)l2) of the shot-noise

* -. component where all parameters are conveniently expressed in dimension-

less form allowing explicit evaluation of E{R 2} , and hence the scale

parameter associated with f,(.), for a fixed value of y2Ts .

-"I. Statistical Characterization of Noise Model:

In this section we describe some of the low-order statistics which pro-

vide a partial, although useful, characterization of the impulsive noise

model described in the preceding section. Since most of the literature on

*- noise measurements, particularly on the measurement of atmospheric noise,

have dealt almost exclusively with the envelope process A(t)=Iii(t)i, we con-

centrate on envelope statistics. While many choices are possible we con-

sider two envelope statisti.cs* the amplitude probability distribution (APD),

and the average level crossing rate (ALCR). These two statistics are not

only illustrative of impulsive noise effects, but data are generally avail-

able for gross calibration purposes. We consider each of these statistics

separately.

A. Ampt4de PobbiJJty ViLttibution (APV): Ift f a ( - represents the first-

order p.d.f. of the envelope process A(t), then the A.PD is merely the prob-

ability
Qa (x) f I a(O)d (30)

"-" X

Lf- t We will assume steady-state conditions and suppress any explicit function-

al dependence upon time in describing first-order distributions.

4-12



of exceeding the fixed level x. In evaluating APD's, as well as ALCR's,

it is convenient to normalize the fixed level x to the rms value of the

envelope. Because of the presence of the AWGN component, however, this

rms value is unbounded. Thus,it is necessary in evaluating APD's and ALCR's

to assume that the noise process ;(t) is observed through a fictitious measure-

ment filter of finite single-sided equivalent rectangular bandwidth B' Hz.

K The question of choosing an appropriate bandwidth for evaluating APD's

*poses some difficulties. In particular, if the measurement bandwidth B'

is not appreciably larger than that of the .shot noise component then the

. actual shape of the APD curve can be expected to depend upon B'. If, on the

other hand, B' is much larger than the bandwidth of the shot noise compon-

ent then the shot noise is unaffected by the presence of this fictitious

. measurement filter. In this case, changing B' merely allows more or less

:* AWGN thereby scaling the APD curves up or down without affecting the shape.

Similar comments apply in the case of ALCR's. We assume then that B'>>B,

with B the equivalent rectangular bandwidth of the shot noise component

* given by (29). The total mean-square value of the "filtered" impulsive

noise W'(t) is then given by

C= C2 + a2L (31)
.%

where a2 = E{ Iy(t)1 2) is unaffected by the action of the filter and

-214 2N B'. We now proceed to an evaluation of the APD for this "filtered"0
impulsive noise process.

From (30),the difficulty in evaluating the APD is directly related to

the ability of determining the p.d.f. f (.). While the exact evaluation
a

of f (.)is extremely difficult in general, evaluation of the characteristic
a

4-13
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function (ch.f.) is relatively straightforward in some special cases.

This allows evaluation of fa( . ), and hence Qa(.), by numerical techniques.

The joint ch.f. of the I/Q components n'(t) and n'(t), respectively,

i c S
is given by

c1 c s

where we have made use of the independence of the shot noise and WGN com-

ponents. Clearly, NOBI 2 2

i:.11 *w , w (Vl 'v2 exp{- -- [V+V]
(v1 2 2 1B 2 v]

exp{-a 2' 2/2) (33)

where for convenience we have defined a ' NoB, and fv3+v2 " The

quantity a2 = a?,/2 represents the common variance of the I/Q componentsV w

of the filtered background Gaussian component V'(t). Similarly, the

joint ch.f.

"; *Yc1 Ys v v)=E{exp [ J(v y c (t) + Vys (t))1 ) (34)

of the shot noise component can be shown to depend upon vl,v2 only through• .'.2

8. It follows that the joint ch.f. '1 n,ns (Vlv 2 ) then depends only upon

8. In this case the envelope p.d.f. is given by

fA) rA$J (BA)P ,(B)dB
a f(a) = 0 n n

c 

s

'."A 0 )  c ( )-r 282/2 (35)

•J (BA)y, ($)e w d8 (35)
0 c

- We will distinguish the output components of the fictitious measurement

filter with a prime.
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where J (.) is the ordinary Bessel fnction of the first kind of order v,

and we have made use of (32) and (33) in obtaining this last expression.

Finally, it is easily established that the APD given by (30) can be eval-

uated according to

SQa(x) = l-x Jl(Sx) Yc s e d82 , (36)

C
which is readily evaluated by quadrature given explicit expression for

:.... ., ,y (8).
;-L;Ycy

The major difficulty in evaluating either fa(.) or Q(.) through (35)
a -a

and (36), respectively, is the general inability of obtaining concise ex-

.* pressions for the joint ch.f. p () of the shot noise component. An'.';y

exception is the case where {IN(t), t>O) is Poisson, i.e., v=I. In this

case it is shown in Appendix A that

-y (8) = expf f J [Er{J 0(2 8Rh 0(T))) -l3dTI (37)

Here, the expectation appearing in the integral is with respect to the

rando:a amplitude F of the input pulse process, i.e.,

E=r {J0(1Sh0())} T J0 (2SRh 0 (T))fr(R)d-R  , (38)

0
where f r (.) is given by either (19) or (21). Again this quantity can be

evaluated in closed form only in special cases. One useful case is when
f ( -) is power-Rayleigh with characteristic exponent c=l.0, in which case
r

it is easily shown by straightforward integration that

E {J (42 6Rh (T))) = [1 + 2R82h2(T)Y. (39)rO0 0 0 0

-atSubstitution into (37) for h0 (t)=e u 1(t) yields

4-15
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4 : [cs( (a = 2 1 (40)

Here, E{t?(t),12  is the variance of the shot component and we have made

use of (20) together with Table 2 to evaluate the scale parameter R0 assoc-

iated with the power-Rayleigh distribution. It is interesting to note that

in the high-density case, corresponding to large (X/a),we have

":" , (B) z exp{- I C 2 }  , (41)
"" "yYc 2Yy

where O2 2/2 is the common variance of the I/Q components of the shot noise

process. As expected, the shot noise is Gaussian in this limiting case.

*Substitution of (40) into (36) allows evaluation of the APD by quad-

rature in this special but useful case. The results are illustrated in

Fig. 4 using a 64-point quadrature formula. Here we plot the envelope norm-

alized to its rms value versus the percent of time that the ordinate is ex-

ceeded. The curves are specifically designed so that a Gaussian distribu-

tion (Rayleigh envelope) plots as a straight line of slope -1/2. Observe

that the APD's do appear Gaussian at low levels and depart considerably

from Gaussian behavior at high levels. Also note that at low levels the

curves, although parallel to, are depressed below the Gaussian curve (y2T =0).

The reason for this is that we have chosen to normalize the envelope to the

total rms level. From (31) we observe that

2
E{A (t)) = E{Il(t)I

2 }

so that in the low-level Gaussian region the curves can be expected to be

"'- depressed below the straight-line Gaussian characteristic by approximately

1-4-16



,'.; = 10 logl l+ ,'s(3

which is consistent with Fig. 4.

Also included in Fig. 4 are simulation results obtained on the previous-

ly described ICS [5). These results have been obtained using a minimum of

107 samples in each case. As can be seen the agreement with the computed

results are excellent. In more general cases, the numerical evaluation of

APD's according to (36) has proven extremely difficult. The major difficulty

is in obtaining closed form expressions for the joint ch.f. *cYIs (B). In-

deed, even in the Poisson case evaluation of ycs(B) according to (37) is

•. difficult and is quite hopeless for non-Poisson input processes, i.e., v>l.

Because of this general intractability of analytical evaluation of APD's,

and the relative ease with which accurate simulation results can be obtain-

ed we will rely exclusively upon the latter in what follows.

In Fig. 5 we illustrate simulation results for the same situation as

in Fig. 4, except now a=O.5. Note the much higher probability of exceeding

large levels indicating much broader tails to the envelope p.d.f. Also

note that even small values of f2T5 (363 say) can have a pronounced effect

on the high-amplitude region of the APD. In Fig. 6 we illustrate the effect

-of varying 3'Ts with 2Ts 20dB and conditions otherwise the same as in Fig. 5.

The APD's approach the Gaussian curve in the lo--amplitude region with in-

creasing B'T as predicted by (43). Clearly, increasing B'T results in
5 5

more of the AWGN component being passed by the fictitious measurement filter

thereby contributing more heavily to the total mean-square noise. Observe

* that provided B'>B, as is indeed the case in Fig. 6, the APD is affected

very little in the high-amplitude region as B'T is increased.
S
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The effect of varying the parameter aT is illustrated in Fig. 7,
s

again for power-Rayleigh pulse amplitudes with a=0.5, )T =0.1 and y2T =;"'. " " S S

20dB. For small aTs there is considerable pulse overlap since then )/a>l

and the APD resembles that of Gaussian noise as might be expected from

central limit theorem considerations. For larger aT values the-individ-
5

ual pulses are resolved and the APD departs drastically from Gaussian be-

havior in the large-amplitude region. Similar comments apply to Fig. 8,

where now aTs is fixed and the normalized pulse arrival rate ATs is varied.

Again, for large XTs, or equivalently X/a>>l, the APD resembles that of

Gaussian noise due to the relatively large number of pulse overlaps.

In Fig. 's 9 and 10 we illustrate the effect of- varying a and V for
d

power-Rayleigh and lognormal pulse amplitudes,respectively. It is clear

how by choice of either a or Vd the behavior in the large-amplitude region

can be controlled with little effect on the small-amplitude region. Indeed,

by appropriate choice of parameter values the corresponding APD's for both

power-Rayleigh and lognormal distributed pulse amplitudes can be made to

agree quite well, at least for a 2-ange of parameter values. This is illus-

trated in Fig. 11 where the values of a and Vd have been chosen to provide

the best correspondence for other parameters held fixed.

Finally, in Fig.'s 12 and 13 we illustrate the effect of changing the

characteristic pulse shape and pulse interarrival statistics, respectively.

In Fig. 12 we illustrate that the pulse shape has little effect on AID's

since there is no noticeable difference for a variety of characteristic

pulse waveforms selected from Table 2. Similarly, from Fig. 13 we see that

varying the pulse interarrival statistics,while maintaining AT constant,

, has little effect on the APD.

4-18
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S. AveAae Leve. Coz.zng Rate (ALCR): Consider the average number N+(u)

of upcrossings per second of a fixed level u by the envelope process A(t)=

I '(t)I appearing at the output of the fictitious measurement filter. The

ALCR is then the quentity N+(u)Ts, representing the average number of up-

crossings of the level u in a baud or symbol period of duration T sec.
5

In general, explicit evaluation of the ALCR for the impulsive noise

model described in the preceeding section is extremely difficult, if at

all possible. However, in the particular case where '(t) is a complex
'4

zero-mean Gaussian process (i.e., y2Ts=0) with rms bandwidth B0 Hz, and
S0

variance E{if,(t)I2)=E{A 2(t)) = A0, we have 1163, [173,

N(u)Ts V, B0T (u/A0 )ex-p{-< (u/A0 )2, (44)

where

:27 o2nn ( ) dw
" 2iB 0  f - ()dw

27r cc nn

and S nn() is the common power spectral density of the assumed independent

I/Q components. The ALCR is then readily evaluated as a function of the

normalized level u/A 0 for selected choices of B T s . For example, if the

measurement filter is flat over the interval [-B',B'] we have B0=B'/r

allowing explicit evaluation of the ALCR according to (44) as a function

of B'T where now A = 2_0BI . In Fig. 14 we illustrate computed resultss 0 0

for selected values of B'T together with simulation results collected on

the ICS. In all cases the simulation results are obtained on the basis of

at least 107 samples. As can be seen the agreement between computed and

simulated results is excellent. Because of this close correspondence, and

L Here B' is the equivalent single-sided rectangular bandwidth.
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the general intractability of the ALCR in non-%aus2ian situations, we will

make exclusive use of simulation results in what follows. Finally, before

leaving this special case, we should note that even if '(t) were Gaussian

* the ALCR would depend not only upon y2T but in a very complicated way upon

B'T and B;Ts where B' is now the rms bandwidth of the shot noise compon-
5 0

ent. In particular, it is easily seen that the ALCR is still given by (44)

where now
3Y2Ts

B' 0 2B'T sy 2T

2BIT
s

In Fig. 15 we illustrate the ALCR for impulsive noise under selected

parameter choice for various values of y2T . The parameters correspond to
5

the APD's illustrated in Fig. 5. As can be observed the presence of the shot

noise component results in considerably increased crossing rates relative to

the case of Gaussian noise alone (y2Ts =0) in the large-amplitude region. In

the low-amplitude region the curves are parallel to the Gaussian character-

istic as to be expected, except they are displaced to the left. Again, this

is due to the fact that we have chosen to normalize the abscissa to the total

rms value in which case the curves can be expected to be displaced by an

amount A given by (43). This is illustrated also in Fig. 16 where we vary
1

B'T with y2Ts=20dB and conditions otherwise the zame as in Fig. 15.

The effect of varying the parameter aT is illustrated in Fig. 17, corr-s

esponding to the APD plots in Fig. 7. Again, for small aTs there is consider-

* able pulse overlap and n'(t) is approximately Gaussian. The ALCR then converg-

' es to the dotted curve which is computed according to (44) where B0 is now e-

* valuated from (46). Similar comments apply to Fig.18 where aT =2.0 is fixed
5
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and the normalized pulse arrival rate XT is varied. Again, as for the APD's

* in Fig. 8, for large XTs, or equivalently X/a>>l, the ALCR resembles that for

Gaussian noise due to the relatively large number of pulse overlaps.

In Fig.'s 19 and 20 we illustrate the effect of varying a and V corres-
d

ponding to Fig.'s 9 and 10, respectively. Again, it is clear how the choice

of either a or Vd effects the behavior in the large-amplitude region with

little notieable effect on the small-amplitude nearly-Gaussian region. In

Fig. 21 we illustrate how the values of a and V can be chosen to provide a
d

close match in ALCR corresponding to the APD results illustrated in Fig. 11.

Finally, in Fig.'s 22 and 23 we illustrate the effect of changing the

characteristic pulse shape and interarrival statistics, respectively. These

results correspond to APD's illustrated in Fig.'s 12 and 13, respectively.

As in the case of APL's, we observe that neither the pulse shape or the in-

terarrival statistics has much effect on the ALCR, provided, of course, XT
S

is maintained constant.

IV. Performance of Linear Matched Filter Receivers:

In this section we consider the performance of linear matched filter re-

ceivers in noise environments characterized by the previously developed im-

pulsive noise model. Specifically, we evaluate the symbol error probability

for each of the modulation strategies described in Section II and summarized

in Table 2. It proves convenient to consider separately the cases of co-

herent (i.e., BPSK, QPSK and MSK) and noncoherent (i.e., DPSK, BPSK) modula-

tion strategies. Indeed, the decision variable is of identical form for

each of these two distinct cases. In general, the decision variable can

be written as a sum of three separate terms associated with the signal,

shot noise, and AWGN components, respectively. The error probability

..- 21



conditioned upon the shot noise is easily determined as this is merely the

corresponding error probability for the AWGN channel. It follows that the

overall error probability can then be determined by averaging with respect

to the shot noise component. This is the approach to be followed in sub-

sequent developments where we neglect the effects of symbol synchroniza-

tion and phase tracking errors.

A. CoheAent Modutation: In this case it is easily seen that individual

bit decisions are based upon threshold tests of the sufficient statistics

r.= Re f s (t)u (t-2iT )dt ; i=0,l,2,... (7a)

2 (i-;I)T
and"" (r2k(i+3 )T s )U~_ki~

rsi Be {J2k(i-)Ts (t )u(t2iT )dt ; i=0,l,2,..., (4Tb)

where u (t) and u (t) are appropriate baseband waveforms modulating the
C S

I/Q rails as described previously in Section II where we recall k=l for DISK,

and k=O otherwise. For example, in BPSK only the sequence {r i is employ-
ci

ed to determine the binary sequence {wi) ith

= sgn ri , i0,1,... (48)
-1i

... For either QPSK or MSK, the two sequences U I and {2ii are obtained by
2i 21+1

similar operations upon {rci)and {rsi1 , respectively. In general, by appro-
cl .2

oriate noralization, the decision variable during any given signaling inter-

val can be expressed in the form

d + y + w (49)
N0

t Here {R.) represents the hard-decisioned output sequence corresponding
.. *to the iransmitted sequence {xi)
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Here, Ebis the energy per bit, x=±1 is a binary variable corresponding to

the t.ransmitted bit, v is a zero-mean unit variance Gaussian variate, and

finally Ak

y 4(2/clik,~ A tu(t2k1 d
0

N (21T S)
- ~ Z~g(t.) ,(50)

where

with tI 
kr

2kT C S
s 0

and finally t)j 2 Ts h0( r t uC( - k - T )d(5 
c

In developing these expressions we have made explicit use of (23) and the

sequel. The ft i in (50) are, of course, the event times of the underlying

* point process {N(t), t>o).

in any case, using (149) the probability of error under equiprobable signal.-

ing can be expressed in the form

P+ f &d (52)

where f ()is the p.d.f. of y given by (50) and
y

Q(x) -~. exp{ -y /2) dy (53)

Unfortunately, explicit evaluation of f ()is extremely difficult so that
___ ___ ___ ___ ___ ___ ___ ___ ___ ___ y

t It is easily established that c=1 for BPSK while c for both QPSK and
MSK.
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numerical evaluation of PF though (52) has proven impractical. In some cases,

however, the ch.f. ) is more amenable to evaluation. Indeed, an alter-

native and more useful expression for error probability in this case is shown

in Appendix B to be given by

cc sin i2 /0v -v2/2P 1 + - (v) e dv , (54)
0

which is readily evaluated by quadrature given an explicit expression for

A useful special case for which the evaluation of 4v( .) is relatively
y

straightforward is when {N(t),t>O) is Poisson. In this case, y in (50) is then

a filtered Poisson process with random amplitude sequence {Zi ) and character-

istic pulse shape g(t). It follows [6), [7] that

k
(V;::p{ ,V( ) -~ T (55)

where oz(.) is the common ch.f. of the random amplitude sequence {Z i. In

particular, following a development similar to that in Appendix A we easily

establish that

,p(vg(T)) = Er{J 0(2/ s/CN0 vRg())), (56)

where, as in (38), Er{.) indicates expectation with respect to the random

amplitude of the input pulse process generating the shot noise. Again,

this quantity, and hence (v), can be evaluated only in special cases.

One useful case where z(.) can be explicitely evaluated is when R is

power-Rayleigh with characteristic exponent a=l.0, where from (39) we have

.. (Vg(,)) = [l+4(2kT/,CNO)R v2g(r)]-, (57)

with R again the scale parameter associated with the power-Rayleigh distri-
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i7

bution given by (20). In Appendix C it is shown that for the particular case

of coherent BPSK and with characteristic pulse shape ho(t)=e u 1 we have

,y(v) =*y(V)*y(v) (58)
y y

with 7(v) = [= v a (59a) 

and+ =- - s / s I +

.,y-(V) [ I+v' VJ (

where 2 2TS;eaTs (59c)and - T)(aTs) ; K = ( e

The two quantities f(v) and Wy(v) can be interpreted as the contributions

y y+K2V1 z T--K /

". from impulses occurring prior to the signaling interval and during the sig-

* nling interval, respectively. At any rate, substitution of this express -

ion for Wy(v) into (5I4) allows numerical evaluation of the resulting error

probability.

, In Fig. 224 we illustrate typical computed results using a 6 4 -point

-" aquadrature formula for various values of XTs with aTs=4.0 and y2Ts=2OdB.

q The P curves here and in the sequel have been plotted versus the quantity
e

E.b/1 0 which is the energy per bit normalized to the spectral density of the

F: AWGN component. We have also indicated in Fig. 224 the error probability

•FK performance in the absence of impulsive noise as well as the approximate

performance if all the noise were Gaussian and under the assumption ' 3Ts>1

i212T

. K Actually, the indentical result holds for SK while the results for SK
4. are considerably more complicated.

Sim here B is the equivalent rectangular bandwidth of the shot noise component.

naling~~~~~~~~~~ -25vl epctvl.A n atsbttto o hse~e

ion fo V (v int (5)alos...rcl..lutono.tereu.igero

y

proabii.. . . .. . ...

In~~ ~ ~ Fig 24 we ilutrt tyia copue reut usn a-4p



Specifically, under the latter assumption the total noise environment is

Gaussian with a power spectral density approximately flat over the matched

filter bandwidth (I/Ts Hz) at the value

0
.. NO

s + S (O)
nr 2 yy

= -[ 2B (60)

where S yy() is the common power spectral density of the I/Q components of

the shot noise and we have made use of the fact

E{y 2 (t)= 2
S (O)= 2 0/2) (61)

It follows that the error probability in this environment is simply the

corresponding result for the background AWGN alone shifted to the right by

r y2Ts
A -- lOglo 1+ - dB . (62)

According to Table 2, for the case treated here BT=1 so the condition ETs>I

is not quite satisfied. Nevertheless, we see that for large ATs, or equiv-

alently large A/a, the error probability does indeed converge to the approx-

imate asymptotic performance.

Finally, observe that simulation results have also been included in

Fig. 24 indicating close correspondence with the computed results. The

simulation results were again obtained on the ICS. Because of this close

correspondence between simulated and computed results and the general

intractability of analytical evaluation in more general cases,we will make

exclusive use of simulation results in what follows.

In Fig. 25 we illustrate the effect of y 2T on error probability per-
5

* formance with BPSK modulation and typical parameter choices corresponding

" to the APD results in Fig. 5. Here it is clear that even a small amount of
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impulse noise can have a disastrous effect on the error probability perform-

"* ance. The corresponding effect of the parameter aT on P with other
S e

~'a r~eters held fixed is illustrated in Fig. 26. For small aT, or equivalently

large A/a, the pronounced broad tails are absent and P does decrease rapidlye

with increasing Eb/N 0 as the total noise environment is then approximately Gauss-

ian. The results here correspond to APD's illustrated previously in Fig. 7.

In Fig.'s 27 and 28, we illustrate the effect on P of a and V for the
e d

power-Rayleigh and lognormal distributions, respectively. For the parameter

choices considered, BT >1 while X/a>l so the performance is expected to be given

by our approximate result valid under the assumption the total noise environment

- is Gaussian. As can be seen this is true only for relatively large a or small

Vd. In Fig. 29 we illustrate that if a and V are chosen, as in Fig. 11 to
d' d

provide a close match in APD, then the resulting error probability performance

is likewise quite close. This is further illustrated in Fig. 30 where, for a

unipolar pulse, varying the characteristic pulse shape has little effect on Pe

as observed previously for APD's in Fig. 12. For a bipolar pulse, on the other

hand, P improves with increasing wT5 since then the matched filter is able to- es

average the effects of the impulse noise component. Similarly, in Fig. 31 we

demonstrate that varying v, and hence the pulse interarrival distribution, has

little effect on P consistent with APD behavior illustrated in Fig. 13.
e

Finally, in Fig. 32 we illustrate some typical results employing other

coherent modulation strategies. As expected, the QPSK results are nearly

* identical to those for BPSK with only minor differences from the behavior of MSK.

B. NoncoheAent Modu2.ation: We will be specifically concerned with the error

probability performance of noncoherent BFSK and DPSK. By exploiting well-

known analogies [181 between these two modulation strategies it is possible

L, to develop a unified approach. Consider first the case of BFSK where
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individual bit decisions are generally made on the complex matched filter outputs.

(i+ )TI r~k I (t)az (t-ir~r)dt; i=C,l,2,... (63)

(i-k)T.

where Uk(t), k=0,l are appropriately defined complex vaveforms associated

' with each of the binary symbols to be transmitted. Specifically,

* (t) = U(t)+JxUs(t) ; k=o,l (64)

* with xk=(2k-l), k=0,l and uc (t), u (t) the appropriate baseband I/Q waveforms

from Table 1.

Final bit decisions for BFSK are then based upon a threshold test on the

statistics

zi lfi,-1.l2 li±o ; i=O,l,., (65)

such that the declared binary sequence {RI is

Ii sgn zi  (66)

After appropriate normalization, the statistics given by (63) evaluated dur-

ing any one signaling interval are of the generic form

do = ( NJ o  eY o+*, o (67a)

"" dl = ('+T),-o e**l' (MW):i0

for k=0,1, respectively. Here, x=l represents the transmitted bit while e 4

is an unknown phase offset assumed uniformly distributed over [- ,i]. The

quantities k=0,l, are mutually independent zero-mean complex Gaussian

variates whose real and imaginary components are each of unit variance.

Finally, ,k' k=O,l represent contributions due to the shot noise component

defined according to k-Yk,c-JY with

°4-2
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Yk,c R

0J
N(Ts

z (k'c) )g(t k=O,l (68a)
~~i=l ..

while 'Ykhl Ok,s = - F.i Y(t (t-Ts/2)dt (68b)

0
N(T (k's)g~ i i

L. = g i - ) ; k=O,
i= I  ,

Here, g(t)__ /g2(t)+g2(t) with

c. s

" s~t T I 0 s

so
=c0 h 0(T-t.)Us ((-T /2)dT, (69a)

0f

and finally.'

while
(tl c)=  (e+/+ i) , (0c).

*with *i __ aist)/ct) -

We now show the relationship of noncoherent DPSK to BFSK following the-

development in (18. Specifically, for DSK individual bit decisions are

*made on the basis of the single sequence of compiex matched filter outputs ,

4 -29
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r. J )Ts (t)uc(t-iTs)dt ; i=0,1,2,... (71)

(i )T5

where u (t)=u0 (t) is the corresponding baseband waveform from Table 1. Final

decisions are then made on the statistics

• = i e{ _ ; i=0,1,2,... (72)

with the declared sequence {I i computed according to (66). As shown in [18],

this last statistic can be expressed in the form

Z, - Ifi,l2-lr, ol2 ; i=o,1,2,... (73)

which is functionally identical to (64) for BFSK where now

'i,l 2 ; i 0  ii-()

The sequences (t ,k k=O,l can then be computed according to

-= J~i+)Ts.f(t)u(t-iT,)dt ; i=0,,2,.... (75)

i.k (i-312)T k=0,1,

where U (t)+u c (t+T )
U-(t) c c (76a)

and() - Uc (t)-uc (t+T S)
a 0 c 2 (76b)

Normalized versions of the decision statistics given by (75) computed dur-

ing any one signaling interval, corresponding to those given by (67) for

BFSK, are thent

t" We assume that the preceding baud symbol is knowrn so that the possibility

of paired errors is neglected in this formulation.
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* ~~ 2n 0(-xJe~+ (7'7a)

-2 14 e.,y + (77b)

Here, the quantities Irk, k=O,l are Gaussian noise components with identical

interpretation as in (67) and the sequel. Likewise, the components :7k~ k=O,l

are due to the shot noise where nov ?. Y, -jy k swith

!W(2T)
y Sjc~i =~ (78a)

and
11(2T)

= s 5 Z! q(ti) ;k=0,l (78b)

* where nov 2

g, k) J h 0(r-t)dT, (79a)

~0

ic s 07ibi

and

Z! = 2(2T IN ) .sin(6 +7/4) (80b)
i's 5 0 1 i

A few comments are in order concerning the form of the normalized de-

* cision statistics in (67) and (77) for noncoherent BFSK and DPSK, respect-

ively. In the absence of the shot noise component, it is clear that DPSK

offers a 3d.B advantage over BFSK which is a well-k-nown result for the AWGN

channel. In the presence of shot noise, however, the performance can be

* decidely different due to the distinct difference in the corresponding shot
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noise contributions Yand . Furthermore, although the shot noise com-

ponents in the two matched filter outputs are u-ncorrelated in the sense

that E{: SO) = E{@Y*)= 0, it can not be inferred that they are therefore
01 01

statistically independent. This severely complicates the analysis of error

probability.

Based upon the preceding, a unified approach to the evaluation of bit

error probability can be formulated. Specifically, assume that a "0" has

been transmitted (x=-l), then an error is made with BFSK if d0 Ald 0I<alod -I-

so that

P = Pr{d <dI } (81)e 01

Similar expressions hold for DPSK vith d-I~ k=Ol replacing the corres-

ponding unprimed quantities. In what follows we consider BFSK exclusively

and merely state the corresponding results for DPSK.

*Clearly, the error probability can be determined as

P=JJ r{d <d Iy ,yy 1 ,y, )f (y0  O ,Y1  i..- ~~~ ~ ' P = P{od I y o ~ , s'Yl ,c 'Yl, s f(o ,c 'Yo s Yl,c 'Yls

-y y y(82)djoco, sY l, dY l,s

. where Pr{d 0<d lY0 ,cY0,sY l ,cYl,s ) is the conditional error probability given

S0,c,0,s',l,cYl,s , or equivalently 0 and Yi and f(Y0,cY0sY

is the corresponding joint p.d.f. This expression then provides a parallel

to (52) for coherent modulation. Indeed, following the development in [181,

the conditional error probability is easily shown to be given by

PPr"i" Pr0d<dllYO,,cYo,sYl,cYl,s)= Q(vlaq 2 exp -E2 I0(ab) , (83)

where a 22I
Q(a,b)Jxexp{-

b

.2]]224-32



4.S Marcum' s P-function 5': and - (') is the modified Bessel function of

the first kind of order zero. The quantities a and b in (83) are defined

according to

a =1 (85a)

and

b = (Y 0 c K-= cOsS)2+(Y 0 s N- sine) 2 (8 )2 E

for BFSK while

a = ls2 +yi2) (86a)

and

b~~E CO,,2l(os
cs 0 1 c, ,+ +Nsine) 2  (86b)

00

for DPSKt. As in the evaluation of P through (52) for coherent modulation,
e

use of (82) for noncoherent modulation is somewhat impractical due to the

general inability of obtaining concise expressions for the joint p.d.f.

f(Y0,c ,s 'Yl,c Yl ,s) "

In Appendix D we show that the error probability can alternatively be

written in terms of ch.f.'s according to

Pe + fpdo,dli(-v,vlx=-1) dv ,(87)

i"-
-

where d0,d (v0,vllx=-l) is the conditional joint ch.f. of the decision vari-

ables d0 and d1 given x=-l was transmitted. This result is then analogous

, to the development in Appendix C leading to (54) for coherent modulation.

"" Unfortunately, for the situation considered here the evaluation of the joint

tt
In this case, of course, the Joint p.d.f. in (81) must be replaced by

uY,c,Y0,sY',c .i.,s
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ch.f. Wd0,dl (v0,v), although possible in some special cases, becomes un-

wieldy in general . As a result we resort exclusively co simulation results

in what follows.

In Fig. 33 we illustrate the performance of BFSK for the case of Poisson

arrivals and power-Rayleigh distributed pulse amplitudes with a=1.0. The

characteristic pulse shape is h 0(t)e-atu l(t) with aTs  s

Observe the convergence to the equivalent all-Gaussian performance with

increasing XT s . Similar results are illustrated in Fig. 34 for DPSK. Note the

3dB performance advantage of DPSK vis4-vis BFSK for large )T s when the total

noise environment is close to Gaussian. For smaller XTs, or more impulsive

noise situations, this performance advantage can be considerably reduced.

In Fig.'s 35 and 36 we illustrate the performance of both BFSK and DPSK as

a function of y2T s for selected parameter choices. Finally, in Fig.'s 37

and 38 we illustrate the error probability behavior as a function of aT
s

As in previous work, little sensitivity was observed for either BFSK or DPSK

to characteristic pulse shape, interarrival statistics, or pulse amplitude

distribution provided the APD's wtre matched as in Fig. 11.

V. Icnlinear Receiver Performance:

The preceding section has demonstrated the often catastrophic effect of

impulse noise on linear matched filter reception. Clearly, some form of

nonlinear front-end processing of the limiting or saturating variety should

provide some protection against the large pulse amplitudes which, although

occurring relatively infrequently, contain a large portion of the overall

signal energy. This point has been argued previously [20]-[25), although

to date, little progress has been made in developing a general approach.

N Iote that part of the difficulty is due to the fact that d0 ,d1 are not
necessarily statistically independent.

4
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The alternative is to propose a class of nonlinear characteristics and ex-

plore the resulting performance as a function of various parameter choices

u defining these nonlinearities. Unfortunately, even here a comprehensive

treatment has not yet been provided.

In what follows we assume nonlinear predetection processing preceding

a conventional matched filter data demodulator as illustrated in Fig. 39.

Specifically, we assume a configuration consisting of a zero-memory nonlinear

(ZMNL) characteristic sandwiched between two narrowband filters possessing

equivalent rectangular bandwidths B' and B' respectively. Actually, provided
1 B 2.

BT >>l the second filter has little effect on performance followed as it is

by the narrowband matched filter. Thus,performance will be determined chiefly

by the first filter preceding the Z1OL characteristic. The quantity BIT then

plays the same role as in the fictitious measurement filter used in describ-

ing the APD's and ALCR's.

The class of Z SNL characteristics to be considered can be implemented as

illustrated in Fig. 40 where g(.) is in general some linear functv of the

" signal envelope R(t)=J2(t)j. For example, with S(R)=l/R, the result can easily

be seen to be a narrowband hard-limiter with zero phase distortion. The chief

motivation for restriction to nonlinear processing structuares of this form

" lies in some related work [26) where it is shown that, under the assumption

* of independent noise samples and weak or threshold signals, the optimum ZML

* characteristic is of the form

d kn f(R) (88).L-.~~~ g~(R) la -,(8).

where f(R)=f (R)/27R with fa( .
) the envelope p.d.f. of the filtered impulse

aa

t In [26) the characteristic defined by (87) is referred to as "locally opti-
mum", and hence the subscript on g£0(R)
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noise process defined by (35) and the sequel. Here the predetection filter

.rectangular bandwidth B' replaces the fictitious measurement filter band-

width B'. It follows, in particular, that from (35)

"J6BR) (S)e- , 2 d

0(R) 0 (89)

g ~ WR = (BbRt (S)eow '2d

0

which is again readily evaluated by quadrature provided the joint ch.f.

(B) can be determined. As noted previously,this can be accomplished

only in special cases.

One useful special case for which this joint ch.f. can be evaluated is

when the pulse amplitude distribution is power-Rayleigh distributed with a=
-at

1.0 and h0 (t)=e U1 (t). The Joint ch.f. is then given by (h0). In Fig.

6'" hi we illustrate the behavior ofa2,g£,0 (R) versus the envelope normalized

to its rms level for selected values of y2T and with B'T =16. Here the! s

quantity a2 , is the common variance of the I/Q components of the filtered
n

noise process A'(t). As can be seen the effect of increasing y2T is to
S

severely limit and hence de-emphasize the large noise peaks. In Fig. 42 we

demonstrate the behavior for various values of B'Ts with y
2T s=2dB. Again

for fixed y2Ts increasing BI assuming Bi>B, allows additional Gaussian

noise so that the ZIL characteristics are merely shifted to the right in

accordance with the parameter I defined in (L3) with B Ts replacing B'T.

Finally, in Fig.'s 43 and 44 we illustrate the effect of aT and XT , re-

spectively. Note, in particular, that for X/a>>l the locally optimum ZMNL

t Actually in Fig.'s 41-44 we plot the cuantity o, gn0 (R) normalized to
* its maximum value at R=O, versus R/A 0  n'

0
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approaches the constant value 1.0 which is optimum for Gaussian noise.

For more severe noise environments (i.e., smaller a) the optimum ZMNL char-

acteristics exhibit more pronounced limiting behavior and less saturations

at large envelope values.

While these results are useful in understanding the behavior of the

locally optimum ZMNL characteristic, it remains to approximate this behavior

by a practical class of ZMNL characteristics which do not require a priori

knowledge of noise statistics since very rarely would they be known in a

realistic data communications application. Consequently, we restrict atten-

tion to the ZMNL characteristics listed in Table 3 which more or less approx-

*" imate the behavior of the locally optimum characteristic.

In Fig. 45 we illustrate typical simulated behavior using coherent BPSK

modulation and selected characteristics from Table 3. The pulse arrivals are

'*- Poisson and y2Ts=20dB with BiT =16. Other pertinent parameters are illustra-ls

ted in Fig. 45. The predetection filter in all cases possesses a second-order

"" Butterworth characteristic with prescribed equivalent rectangular bandwidth.

Also, the appropriate clip levels corresponding to ZMNL characteristics in

Table 3 were arbitrarily adjusted to 0dB above the received signal level.

While the choice of clip level is obviously an important parameter, we have

not attempted to optimize this quantity. The justification for the choice

made here is that it clearly eliminates most of the large amplitude peaks

- while preserving the signal structure. In all subsequent work the clip levels

-. have both held fixed at this value.

As evidenced in Fig. 45, the ZMNL predetection processing can be quite

• effective in cumbatting the effects of impulse noise. For example, the alge-

. braic nonlinearity with n=4 provides an improvement over the linear receiver of
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roughly 9dB at P =5xlO 3 . The improvement using the other nonlinear receiv-
e

er structures is only marginal, although this can be improved considerably in

more intensive noise environments and/or through choice of predetection band-

width. This is illustrated in Fig. 46 where the error probability for a

hard-limiting receiver is shown for selected choices of BIT s in a noise

environment characterized by aT =20.0 and y2T =40dB representing severe

impulse noise. Small values of BiTs not only result in intersymbol inter-

ference (ISI) effects which degrades performance, but also disperses or

lengthens the characteristic pulse shape making the hard-limiter less effec-

tive in suppressing the large noise peaks. For example, even for BT s=16

the impulse response of the filter is approximately 3 times the character-

istic pulse shape for aTs=20. The characteristic noise pulse at the output

of the filter is then lengthened by roughly a factor of three. The pulse

duration is then crudely approximated by an "effective" a'T =20/3z7. In

Fig. 47 we illustrate P behavior for a hard-limiting receiver as a function
e

of aT from which it is clear that performance degrades rapidly for decreas-

s

ing values of aT and hence less narrowly confined characteristic pulse

shape. The conclusion is that the predetection bandwidth, at least for

aT > >l, should be made as large as possible. For smaller aTs, the predetec-

* tion bandwidth requirements are much less severe. This is illustrated to an

extent in Fig. 48 where we illustrate results for a hard-limiting receiver

both without a filter and with a predetection bandwidth BT s=8. For the

smaller aT values there is little difference between the two results as wass

to be expected.

t Corresponding results for a linear receiver are illustrated in Fig. 26.

* I-tt And, of course, the simultaneous constraint A/a<l.
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As an illustration of the performance gains to be realized by nonlinear

processing and appropriate predetection filtering, the corresponding results

in Fig.'s 26 and 47 for aTs=20 indicate a substantial improvement of almost

20dB at P =10 - 3 . In Fig. 49 we illustrate the P behavior of a hard-limit-
e e

*, ing receiver as a function of y2 T with a fixed, although suboptimum, prede-

s

* tection bandwidth of BT s=16. Wider predetection bandwidths should imcrove

performance in light of previous comments, but this is the widest bandwidth

that can be conveniently simulated in the ICS. Nevertheless, the results are

useful in demonstrating the dependence upon y2T s . Similar results for a re-

ceiver employing a 4'th order algebraic nonlinearity are illustrated in Fig.c50

VI. Summary and Conclusions:

We have provided a detailed description of a useful and conveniently

parameterized model for impulsive noise. Some of its low-order statistical

properties have been investigated both analytically and through simulation

Similarly, we have described the error probability performance of a variety

*i of linear and nonlinear receiver structures in noise environments as describ-

ed by this model. The rationale underlying the use of nonlinear predetect

ion processing was described and the performance advantages of such process-

ing illustrated.

While these results should prove useful in the design and development

*of digital communication systems operating in impulsive noise, much more work

remains. Specifically, it is believed that analytical methods although ted-

ious, can be carried much further than described here. This is particularly

*true for linear receiver performance although somewhat questionable for non-

linear processing structures. At any rate, more comprehensive results, either

analytical or through simulation, are required to obtain a complete picture

of nonlinear receiver performance in impulse noise as described here.
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AF PEI-DIX A

Evaluation of Characteristic Functio.

of Shot Noise Componen. for Pci.son Arrivals

We are interested in the evaluation of the joint ch.f. of I/Q compon-

ents of the shot noise component given by

Y <'(v 'v2 = E{exp[J(vly (t)+v 2Y2 (t)]} (A-l)

-N(t)
- E{exp[jv'2 R ih0(t-t. i){v1cos(ei+7/4)+v 2sin(ei+7r/4)}

i1l

where we have made use of (23) and the sequel. This last expression can then

be written as
N(t)

' ( 2 = E{exp[jv2 N 0zh0 (t-t
i )} , (A-2)?s i=1

where

zi = R'cos(.i+r/4-), i=1,2,... , (A-3)

with * = tan v 2v . But the right-hand side of (A-2) is merely the ch.f.

of a baseband filtered shot noise component with random amplitude 420z. aad
1

impulse response h 0 (t-ti). While this is difficult to evaluate in general,

the result is well known in the case where {N(t), t>O} is Poisson. In

particular, in this case we have (cf. [61)

Sc (vl v 2 = exp{xJ [ ))-lld ,
0

where z(v)=E{eJVZ} is the common ch.f. of the i.i.d. sequence defined

according to (A-3). Specifically, we have

z/2h( )= J I l [ e j 2 R O(. ( + 4 d l rRd (A-5)

o

0
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where we make use of the definition of the Bessel funcfion of the first

kind of order zero defined according to

J0(x) = JXC°S(6-0)d6 (A-6)

p'.-T

It follows then that

{(VlV =exp(X [E {J (/2SRh0 (T))-l]dT) (A-7)
! 2)e r0 0

where Er{.) indicates expectation with respect to the envelope distribution°r

according to the last term on the right-hand side of (A-5).
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APPENDIX B

Alternative Error Probability Expression for Coherent Modulation

The error probability for linear matched filter reception employing

coherent modulation can be expressed in the form

Pe = p0 Pr{d>0Ix=-l}+p 1 Pr{d<0Ix=l) , (B-l)

where d is the decision variable given by (48) and p0,p1 are the prior

* probabilities of x=-l and x=l, respectively. Under equiprobable signaling

- we clearly have

P =Pr{d>Ox=-l}I e 07

-=I- f ( jx = - l ) d . (B-2)

In terms of ch.f.'s it is easily shown that

,.. f(& jx=-l)dE=  U-l(-O)fd(&Ix=-lld&

"* *(vlx=-l)

+ d dv (B-3)

where 1) (vlx=-l) is the conditional ch.f. of d given x=-l. Recall also

d VlX=-i- 1  N v- 1 v2 (B-4)

where (v) is the ch.f. of the shot component. Thus,

v1  () 2Eb v 2/ d,

e 2 2r jv J

_ _'" sin /VN0 v 2 dv

1 1 - v I (B-5)

2 n y v
0

which is readily evaluated by quadrature given the ch.f. y (v) of the shot

noise component.
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APPEYTDIX C

Evaluation of Characteristic Function of Shot Noise

Component at Output of Linear Matched Filter in Special Case

We evaluate the ch.f. *y(v), given by (55), in the special case of
y

coherent BPSK modulation when the input pulse amplitude distribution is

power-Rayleigh with characteristic exponent a=l.O, and the filter generating

- the shot noise is described by h (t)=e-atul(t). In this case we find
from (51) that for t<T

-s

or a - -a( -t) (t)
g(t) f

-a

where [1 l-e sl t<0 , (C-2)

whereupon substitution into (56) yields z( e At this point it is conven-

,'.ient to express Cy(v) in the form

• :. y~) _(v) + 60, (c-3) ,

impulses, and T

M(v) _ exp{N [* (vg(T))-l]dT , (C-5)

0

which is the ch.f. associated with impulses occurring during the present sig-

* naling interval. We will be particularly interested in evaluation of the

integrals appearing in these two expressions.

4
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Consider first the integral appearing in the expression for 0C(v) i.e.
y

j-0 CID
(vg(T))_ { 1l

S VG, 2 e -2at

= - in 2 } (c-6)

where

4(T /11 )R
2V2  2y2Tv

2

,0 0 T T 'Vo2o
*" ." -.4 SO 0 - S• (aTs  (X Ts ) (aTs  ( C-7)

and K 1- ieas .It follows that

= '(c-8)
y2

where we have found it convenient to introduce the parameter

2y2T (c9)
v -()T )(aT )

Now consider the integral defining y,(v) which is a bit more difficult

to evaluate, i.e.,

T T

. [*z(vg(t))-l)dT = 1- , (C-l)
00 0 •+ 7VI,"er TS-T

with ' as in (C-7). Under the change of variable x=(l-ea(s)J, this last

integral expression becomes

T s ~ 1 JK{ 1 1 dl* (V() )mlldT= -

. '.x a 1-x

0 0

= II -L(/a)tn eaTs (C-11)

r7- with C' and K as above, and
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(C-12)

0m

Now under the change of variable y1l/l-x we have

aT
1{e s dy

aT
e s

- 1 £n /' V-2' y+("+ )y2+ y ' 7- -' , --(C-13)

aVT+ 11T

where the last expression is taken from standard integral tables. After

some manipulations we have

1= 1+ £n /(s+) +(l-eas)+] +(i+ )-'e-aTs} , (C-l)

with the result

(Vg(T))_l]dT= 1 £n{ l+ 'K+.(l+ )(l+ 'KL) } (C-15)

Sl - aT C1-r+

Finally, substitution into (C-5) yields

-.. " +(v) =  l exp XTs  1

y i+ Kv2+( l+ v2 ) (l+ K2v2
')

where again we have made use of the parameter C defined according to (C-9).
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Alternative Error Probability Expression

for Noncoherent Modulation

The error probability for matched filter reception employing noncoherent

modulation and equiprobable signaling can be ex-pressed in the generic form

P = Pr{ d0<d! x=-l}

e 02_- = J (f dko, n jx=-2 d 0 1

= J fC U -1  0 
)f ; d d ( 0 5x l-i)d0d~l (D-1)

where do, dl are decision variables appropriate for either BFSK or DPSK. Now

from Parseval's theorem this last expression leads to

P" 1 o o

;U"v 0 ,Pe = dU(v0V d (v0,vl Ix=-l)dv0dvI , (D-2)

-CO -00

where ipdd(vOvltx=-l) is the joint ch.f. of the decision variables d0 ,d1

given that x=-l, and
U(vo0 vI) = 1 u-(E-& 0 )e-j( 0"01+l1 1 dqd 0  (D-3)

is the Fourier transform of ul( 1 - 0 ). Clearly,under a change of variable

U(v 0 ,vI ) = U_l(T)e-Jvl'd e-J(vo+v 0 d 0

= [t(vl) + -][ [,(vo+Vl) (D-4)., JvI

2T (vo+v I )
= 21T2 6(v 0 )6(vl) +

v1

* where we have made use of obvious transform pairs. Substitution into (D-2)

yields pl + f ,d)
e 2 f J Jv dv (D-5)

CO
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Figure I4

Comparison Of Computed and Simulated APD Results for
Special Case of Power-Rayleigh Pulse Amplitude Distri-bution with Characteristic Exponent ac=1.0.
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PART V

INCORPORATION OF ADAPTIVE ARRAY PROCESSING CAPA:-B,.IZS

INTO THE INTERACTIVE COMM4UNICATION SIfiULATOR
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I. Introduction:

e analysis and design of digital communication systems has historically

focused upon strictly temporal processing. In an increasing number of import-

ant applications, however, it is clear that some form of spatia/ processing

is desirable. The spatial processing may be used to steer a beat in the

direction of the desired transmitter or to place a null in the direction of

an interfering transmitter. Here the interference may be deliberate elect-

ronic countermeasures (ECM) or jamming,or unintentional radio-frequency inter-

ference (RFI).

A number of systems have been developed or proposed --hich utilize some

" form of spatial processing in addition to the conventional temporal process-

ing associated with typical digital communication receivers. However, there

has been no systematic and comprehensive study of the subtle interactions

between spatial and temporal processing structures in an attempt to identify

the tradeoffs and develop an optimum basis for rational design of digital

communication systems subject to spatially distributed interference. Part

of the difficulty lies in the intractability of a strictly analytical approach.

Specifically, although optimum spatial/temporal receiver structures can be

determined under precise, and sometimes restrictive, modeling assumptions,

the error probability performance of these structures is difficult to analyze.

Furthermore, the effects of deviations from modeling assumptions is difficult

to establish. Finally, the performance evaluation of subo-.1mum, and presumably

less complex and more robust, procesing structures is often hopelessly com-

plicated. As a result, some form of simulation facility is required as an

adjunct to ongoing analytical investigations.

5-2
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In the present report we provide an explicit descriion cf how

adaptive array spatial processing structures are to be incororazed into

the existing temporal processing capabilities of the :--nteractive Communi-

cations Simulator (ICS). The ICS [1] is an extensive hardware/software system

which has been configured to allow realistic simulation of a variety of mili-

tary, space, and commercial point-to-point communication links with provision

f for flexible future expansion. The important system desit considerations

in developing this simulation capability is discussed and the choice of

important parameters is described. Also described is the. manner in which

this capability is to be utilized in ongoing research c- digital cormuni-

cations in spatially distributed interference channels. i: is expected that

this additional spatial processing capability will significantly enhance the A

usefulness of the ICS as a simulation tool.

In Section I we describe the channel signal and rci=e moaeling assump-

tions. This is followed by a description of adaptive rray processing

structures and their incorporation into the ICS in Section 171. In Section

I\ we discuss some future simulation studies to be undertaken. Finaly, in

Section V we provide a summary and conclusions.

II. Preliminaries:

In what follows we will make extensive use of ccmlex narrowbrnd repre-

sentations of all signal and noise processes. Specifically, the received

signal at the output of the i'th element is given by

"•~~ r ( t ) = ,72 Re{21i(t)e J27Tf ct};il2 '': ()

where f is an assumed known carrier frequency in Hz, ad .i(t)=r ci(t)-jrsi(t)isth c c e l ef

~is the corresponding complex envelope expressed in terns of low-pass wavef'orms

f l 5-30



,.-A127 741 DIGITAL COMMUNICATIONS IN SPATIALLY DISTRIBUTED ,3 '

INTERFERENCE CHANNELS.. CU) RENSSELAER POLYTECHNIC INST
TROY NY DEPT OF ELECTRICAL COMPUT..

UNCLASSIFIED J N MODESTINO ET AL. DEC 82 RRDC-TR-82-i5i F/G 17/2 M



a o _ . *. M. 
- - . .. . .. - . , ,

9111 1.0 ILI2 U8
96 32 1 2

.41.

*1.25 111 4 Qi

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDAROS-1963-A



ci si(t) representing the inphase and quadraure ..I conponents,(t) and r 
- -

respectively. The complex envelope is furthermore assu-ed of the form

U i(t)= i (t)+ 0 (to)+i(), i=l,2,. ,;, (2)

where Oi (t) is the complex envelope of the received signal component at

the output of the i'th element, Y0i(t) is the complex envelope of the corres-

ponding interference component, and ti(t) is a co=xplex zero-mean additive

,* i' white Gaussian noise (AWGN) component. Specificaly, .(t)--i(t)-JWsi(t)

with wct), Wsi(t) mutually independent WGN processes each possessing double-

sided noise spectral density N0/2 watts/Hz.

The signal component A0i(t) is assumed of the form

§: O0i(t) §rh tTT i=!,2,...,N, (3)
J 1

where 9(t) is the transmitted signal as it would be received at the output of

1*an ideal iso:ropic sensor located at the origin of spatial coordinates and
excited only by the incident signal field. The quantity hi(t,z) represents

the complex spatial/temporal impulse response of the ith senscr where it is

inplicitly assumed that the transmitter/sensor geometry is known a priori.

Similarly, we assume thatj0~t = h (t,T)dx ; i--1,2 ,(
• ~t Y; j-i (t ij ,.

J=1 -cc

where 5j(t) represents the output of an ideal isotropic sensor to the J'th

interference source, J=1,2,... ,J and hi (t,T) represents the conplex impulse

response of the i'th sensor to the J'th interference source. Again we assume

the quantities hi (t,T) , i=1,2,...,N; J=1,2,...,J can be described, if only

in a statistical sense, given the interferer/sensor geometry.

.t An ideal isotropic sensor is defined as a sensor having unit response to
signals incident from all directions and all frequencies.
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While the complex spatial/temporal impulse responses h. (t,T), i=1,2,

i
... ,N,J=0,l,2,...,J may be random as well as time varying, we will be spec-

ifically interested in the case where these quantities are deterministic

time-invariant quantities given the transmitter/interferer/sensor geometry.

That is, j (t,T)=h (t-T). For example, in the case of a pur time delay
id ij

of Tij seconds we have h ij(t)=6(t-Tij )e-J2 fc TiJ. The delta function accounts

for the group delay associated with the complex envelope while the complex

exponential accounts for the corresponding phase shift of the carrier.

It follows from (2) that

-0i (t)={s c(t-Tio )cos2f cT io-s s(t-r io)sin2wf cT iO

-J{ss(t-Tio )cos2rf cTiO+Sc (t-Ti0 )sin2ffffcTi 0 • (5)

If B 0 represents the bandwidth of the signal component t(t) then for the cases

of interest in what follows it will always be assumed that BTi0<<l, i=1,2,...,

N. It follows that 9(t-T )Z§(t) so that
jo

"0i (t)={s c(t)cos2ffc Ti-s s(t)sin2wfc T i

-J{ss(t)cos2fTi0 +s c(t)sin27fcT 0 i , (6)

and the terms within braces represent the corresponding I/Q components, re-

spectively. Similarly, the interfering signal component in (4) can be ex-

pressed as

.1 oi(t) = X [{yc(t)cos2f cT j-Y sj (t)sin2fffcTijJ~l cJ=1

I -J{Ysj (t)cos2wf c Tij +Ycj (t)sin2wf c~} T (7)

where the terms in braces again represent the corresponding I/Q components.

Thus, realization of the signal and noise models merely require specification

t For notational convenience we represent h.(t,T) as h ^(t,T) allowing concise
treatment of all complex impulse response functions.

* tt Actually, in what follows we assume that B is the double-sided equivalent
0rectangular bandwidth in Hz.
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of the signal complex envelope 1(t), the statistics of the interfering

" signals Y3 (t), J=l,2,... ,J and the signal/interferer/sensor geometry as

embodied by the delays Tij, i=,2,.. ,N, J=O,l,2,... ,J.

We assume that the signals of interest are described as in [1]. Spec-

ifically, we restrict attention to digital signalling formats such that

§(t) has the representation

Hee~epndpo U5 (trit::i2 ar:
":.'.~ s 2,-"s (t 5 ]e  8

[ 'iHere, depending upon the modulation strategy employed, uc(t) and u (t) are

appropriately defined baseband waveforms modulating the I/Q rails. Similar-

ly, the quantities C ,C depend upon the binary (i.e.,±l) data sequence

{xil to be transmitted in a manner specific to the modulation strategy in

use. The quantity k in (8) assumes the values 0 or 1, with the choice k=l

generally corresponding to the case of staggered overlapping baseband wave-

forms as in MSK. Finally, the quantities T and 6 in (8) are, in general, ran-

doa timing epoch and phase offset, respectively. An important part of ongoing

research efforts will be the development of appropriate schemes for acquiring

S.. and tracking symbol synchronization and carrier phase in the presence of

spatially distributed interference. A summary of present modulation capabil-

ities in the ICS and their representation in the form (8) is provided in

Table 1.

Finally, the class of interferring signals yj(t), i=1,2,... ,J of interest

will typically be burst or impulsive noise processes at specified geometrical

locations relative to the origin of spatial coordinates, although we will also

consider the case of continuous-wave (CW) interference. In the former case

t The sequence {Xi actually represents the output of the channel encoder.
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we model y3 (t), J=l,2,...,J as a complex low-density shot noise process as

described in detail in Part IV. Specifically, the parameters describing

U the burst or impulsive noise model are specified for each of the J interferers.

An important parameter in each case will be the quantity

.-"2 E{I (t)1
2

)

2 = , j=2 ,L , )N0

or equivalently y2T, which represents the power in the J'th interferer

normalized to that of the AWGN component when measured in a double-sided

*noise bandwidth equal to the baud rate f =1/T . At any rate, the signal
5 5

power relative to the power from the j'th interferer is then

s/Es/N =,,.. - (10
Pj E{ j (t)1 2 } yl s0

so that knowing E IN and the dimensionaless parameter y2 T allows explicit

evaluation of the signal-to-interference ratio (SIR). In coded systems it

is the quantity Eb/No which serves as the independent variable with E==REb.

Here Eb is the energy per information bit and R is the code rate in in-

formation bits transmitted per channel use. It follows that the SIR for the

j'th interferer is then

Ps (Z/N 0) (11)

y- j T s

A number of pulse shapes are presently available in the ICS for simulat-

ing burst or impulsive noise. This will be modified to include Gaussian bursts

as well as pulsed CW. It is also intended to provide a continuous Gaussian

interference capability as well as CW at a specified off set from the carrier.

5-7
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In the latter case the interference signal has complex envelope of the form

j ~ j Je . .. (12)
t)= • ej ~ ; j= , c , (2

. where P is the corresponding signal power, and f is the frequency offset

in Hz. Actually the normalixed quantity fT s, which is the offset normal-

ized to the baud rate, will be specified. The interference power will now

be adjusted for a specified value of y2T where now

P
Y2 = No i=l,2,.. .,J 13)

The SIR is then given by (10) for uncoded systems and by (11) for coded

systems.

III. Adaptive Array Simulation:

The signal and interference models have been described in the preceding

section. In the prebent section we describe the adaptive array processing

* structures to be studied both analytically and through simulation as part of

*" ongoing research efforts. We assume that the appropriate array element out-

puts are generated as illustrated in Fig. 1. Here the modulation type, Es/N 0

and transmitter filtering parameters are chosen exactly as in the present ICS.

The choice of channel models now includes; AWGN, impulsive, and fading/
-,

dispersive channel. To this we will add a fourth option to be called

spatially distributed interference channel. As indicated in Fig. 1 the

user must then supply the array parameters, the signal location and the

interference parameters. We describe each of these quantities separately.

AA.aY Pa meteu : Here we must specify the number N of elements as well as

their location with respect to a phase center or origin of spatial coordinates.

We intend to restrict attention to linear arrays consisting of no more than

5-8

i'...... . . . . .



N=8 elements. The location of each element vi-.h respect to the origin

will be specified in terms of the distance d'i= u=z:-s of the wavelengh

xat the assumed carrier frequency. The el.ements vill all1 be assumed

S.~gnat Loca.tion: we assume that the signal location is specified as the

angle 8e5 with respect to broadside as illustrated in Fig. 2. The appro-

priate element delays x i0 are then easily calculated as

T ±+- sine ;i=1.,2,... ji~ (14)

where the proper algebraic signs must be chosen depending upon which side

of the phase center the element lies. The phase factors e.0 27rf i n (6)

can then be comnuted as 8e±=2ird'sinS 5,ixl,2,... ,N in a convenient form

independent of the underlying carrier frequetcy.

InteL~jeence Pw aete.u: We intend to lin±-t consideration to no mcre than

'J=4 interference signals. For each interferer then -we rust first specifY

*the direction e vith respect to broadside as illustrated in Fig. 2. This then

allows evaluation of The phase factors 5 -"20 T~ in (7) to be couputed as

e =±2lwd'sin ~=12...,I, J=1,2,... ,J. Then the interference type must be

chosen. Here the following options will be provided:

1. CW

2. Continuous Gaussian

3. Pulsed C W

7 4. Gaussian Burst

5. Impulsive Noise

For example, in 'the case of impulsive noise, as described in Part IV of this

report, we must specify the following quantitites:

9 5-9



a. Pulse Arrivals: The parameter v specifying
, the randomness of pulse arrivals and the

quantity X iTs specifying pulse arrival rate.

b. Pulse Shape: The quantity h (t) specifying pulse
shape as well as the quantityJajT 3 specifying

pulse duration.

c. Pulse Amplitudes: Here we must specify the dis-
tribution of pulse amplitudes and any scale para-
meters required.

d. Pulse Intensity: Here we must specify the quantity

y T representing the interference power to

baciground noise power.

In each of the other choices of interference component similar parameters

must be specified as discussed previously in Part IV.

Having discussed how the element outputs are to be generated, we now

discuss how these outputs are to be processed in an adaptive fashion. The

generic receiver structures to be considered in this study are illustrated

in Fig. 3. Here the element outputs fi(t),i=l,2... ,N are applied as input

to a weighting network which adaptively combines these inputs to produce the

complex signal f(t). The weighting is performed under control of an appro-

priately defined adaptive algorithm. We intend to incorporate a variety of

adaptive algorithms into the ICS. This will include:

1. The least mean-square (LMS) algorithm

2. The generalized signal-to-noise ratio
(GSNR) algorithm.

3. The maximum likelihood (ML) algorithm.

In the case of the LMS algorithm, for example a reference input d(t) is

required to develop an error signal l(t)=1(t)-d(t). We propose

obtaining this in either of two ways. In the first, called

the patched reference mode, we assume a "cheater" line is available

from the transmitter so that the reference can be taken as the actual

5-10
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transmitted signal, i.e., d(t)=9(t). In the second mode, called the

decision-directed mode, the desired signal is obtained through a decision

feedback scheme. Here the array output ?(t) is processed in a temporal

receiver which includes possible predetection processing, matched filtering

and possibly error-control decoding. The output decisions, labeled &.

in Fig. 3, are accepted as correct and passed through a channel model

which is a local replica of the channel encoder and modulator/transmitter

cascade including any a priori known signal filtering and/or distortion

mechanisms. The output of this model i(t) is then an estimate of the actual

transmitted signal and in this mode we choose d(t)=s(t). This same type of

decision-directed processing can be applied to other adaptive algorithms as

well and will be thoroughly investigated in the course of ongoing research

efforts.

The weighting network in Fig. 3 will be assumed of the form illustrated

*in Fig. 4. Here the element outputs are first processed in a spatial corr-

ection filter which consists of a bank of phase shifters. The phase shift

" introduced on the i'th branch is the negative of e0=±2wd!sines, i=1,2,...,N

which was the phase shift experienced by the signal component at angle es

as intercepted by the i'th element. The spatial correction filter then

merely provides the conjugacy condition to point the array in the direction

of the known signal direction. In Fig. 4, the frequency dependent weighting

network is represented by a bank of linear filters with system transfer func-

tion Hi(Jw),i=l,2,...,N. Actually, we will assume that these filters are of

fixed structure defined in terms of a finite and possibly complex-valued

parameter vector-6 so that, in particular, Hi(Jw)=H(Jw;i)_ where the

5-11



filtering function E(jw;a) is known for a fixed value of Z. It is the

parameter vectors a- i=,2,... ,K which are controlled by the adaptiveialgorithm. We will be particularly interested in the case where the filters

take the form of a tapped delay line or zransversal filter as illustrated in

Fig. 5. Here the parameters a., i=1,2,... ,N represent the tap weights and

T
as illustrated in Fig. 5 the parameter vector -z(ala2, ... ,L ) is of dimen-

sion L while L-1 delay elements of T seconds each is required. The result-

ing transfer function is of the form

H(;1)= al+8 2e-JWT+ 3e-2jT+ +....a e-J(L-I)WT

e (15)

In our work we will restrict attention to a number of weights no more than

L=7. Define the weight vector 0 then as a concatenation of the _. vectors

such that

k2
.: • (06)

which is then of dimension IL. Under the limits imposed previously, this

dimension can be no greater than 56, although use of much smaller dizesions

will generally be the case. Similarly, if we define the complex L-vectors

T
as (t)=(xi(t),xi(t-T),... ,xi(t-(L-I)T)) and then the NL-vector S(t) as

3(t)

_ (17)

L _ -(t)(
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the array output P'(t) can then be written as

9' T) RT(t) (18)

The linear weighting of elements of the vector R(t) is then in a form such that

standard adaption algorithms can be applied. Finally, we note from Fig. 5

that the actual array output P(t) is a linearly filtered version of 2'(t).

*This post-array filtering could clearly have been incorporated into the pre-

" detection filtering section of the temporal receiver in Fig. 3. We have

chosen to place it here to provide some possible noise filtering before

applying this to the adaptive algorithm as indicated in Fig. 3. This

filtering can be implemented using existing filtering capabilities of the ICS.

It should be noted at this time that there is no unequivocal guidance

in choosing the tap delays in the tapped-delay line filter. Specifically, if

B is the double-sided equivalent rectangular bandwidth of the signal 9(t)

in Hz we would expect that the sampling interval T should satisfy T<l/2B0

and since B T >1 this would imply that T/T s_1/2, or a delay no greater than

half a baud period. In the existing ICS structure it is convenient to take

T/Ts=l/2k for some k>l to be specified by the user. This provision will then

be provided as a user option otherwise the default condition k=l will be

assumed.

In the preceding we have basically described how the DESIGN Mode of the

ICS is to be modified to allow incorporation of an adaptive array processing

capability. We now describe how the other operating modes are to be modified.

We describe the VALIDATION AND SIMULATION Modes separately.

VALIDATION MOVE: At present we have three classes of waveform plotting options;

baseband waveforms, channel waveforms, and synchronization waveforms. Within

these existing options we will add the option of plotting the prefiltered
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array output t'(t) as well as the actual array output '!(t) under t -

channel waveform category. Actually, the ability to plot 1(t) is already

available and presently labeled "channel output" so this presents no diffi-

culties. Similarly, under the synchronization waveform category it is de-

sirable to add the provision for plotting an estimate of the instantaneous

SIR as a function of time and/or snapshots of the instantaneous array spatial

pattern. This information would provide some understanding of the "spatial

synchronization" properties of the array together with the more conventional

time and/or phase synchronization. Since we propose updating the weights

t
no faster than at the baud rate it is not clear that enough data can be

collected in the VALIDATION Mode to demonstrate any significant convergence

characteristics. This information can best be collected in the much faster

SIMULATIOT Mode and is described in somewhat more detail below. Nevertheless,

we will atemnt to definitively establish the feasibility of collecting and

displaying this information in the VALIDATION Mode since we feel this would

be useful for demonstration purposes.

SIMULATION MOVE: Here we will be primarily interested in collecting data on

symbol error probability Pe and bit error probability "b in terms of the parp-

meters of the spatially distributed interference channel as well as those

of the adaptive array. We will also be interested in more detaile' error

statistics such as the error-free gap distribution, the Gallager burst

statistic, etc. Fortunately this capability already exists in the ICS so

this presents no difficulty.

It would appear that to update the weights any faster would proiuce un-
desirable signal modulation which would degrade the overall error
probability.

° ." : 5 -1 4
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It should be noted that the error statistics described in the Preceding

"0 are obtained by averaging over all modes of the interference and are not

exclusively concerned with the transient behavior of the adaptive array

as is most work in this area. For impulsive or burst interference character-

istics the latter approach simply does not make sense since the adaptive

array is generally in a transient state, depending, of course, on the number

*' of interferers and their respective pulse arrival rate. For purely CW or

continuous Gaussian interference, on the other hand, the transient behavior

of the adaaptive array might well be a matter of legitimate concern, although

quite pheripheral to the operating error characteristics of the digital

communications link. In this case we propose allowing The array tc adapt

first dLring an initial acquisition or training period of specified duration

during which no error statistics are collected. The weights can then either

* be frozen at the end of the acquisition period or allowed to continue adapt-

ng irntc the tracking period during which error statistics are collected.

, An accuisition period -lll also be provided for impulsive or burst inter-

ference although in this case it makes no sense to freeze the weights at

the end of this period. The user will be allowed the option of either

the patched reference or decision-directed adaptive adjustment mode during

either the acquisition or tracking modes. This is entirely consistent w-ith

the present structure and operating usage of the ICS and should present

little troblem in implementation.

Finally, as mentioned previously, we would like to have the ability to

plot the instantaneous SIR as a function of time and/or plot snapshots of

* the instantaneous array pattern. We propose collecting data, to allow
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*: subsequent plotting in the ANALYSIS Mode, of the SIR at multiples of the

array update rate. This can be calculated from knowledge of the instant-

aneous array weight vector and the signal/interference/sensor scenario,

although this is yet to be worked out. Similarly, snapshots of the array

pattern can be calculated from the instantaneous weight vector. These

will likewise be available for display in the ANALYSIS Mode at specified

multiples of the array update weight. A specific scheme for accomplishing

' :this will be developed and reported upon at some later time.

IV. Research Directions:

The incorporation of an adaptive array processing capability into the

ICS is not to be considered an end in itself but rather to provide a com-

prehensive and flexible simulation tool as an adjunct to parallel analytical

efforts. In this section we describe some initial research directions which

are expected to make extensive use of the ICS in this capacity. These initial

research directions will include the following:

1. Uncoded System Performance: We will be specifically

interested in the operating error probability per-

formance of uncoded digital communication systems

for various signal/interference/sensor scenarios.

Of particular interest will be impulsive or burst

interference channels. While the SIR and total SNR

are easily calculated these quantities do not deter-

mine error rates in non-Gaussian interference environ-

ments. Explicit calculation of error rates for special

cases may be possible but exceedingly tedious and

simulation results will prove quite useful. We expect

that nonlinear predetection processing in the temporal
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receiver will be re;uired to mitigate the effects

of non-Gaussian interference bursts. Experience

has indicated that brcadbend spatial nulls will be

required if spatial filtering is to be effective in

S,., this environment. We will be Particularly interest-

ed in uncovering any particular sensitivities of
specific modulation strategies to spatially distri-

buted interference.

2. Coded System Performance: We expect that the most

efficacious solution to minimizing the effect of

spatially distributed interference will consist of

a judicious combination of adaptive spatial filter-

ing and either error-control and/or spread-spectrum

coding. In impulsive or burst interference channels

we expect that the new low-rate convolutional code construct-

ions described in Part III and will prove particularly

effective. Similarly, for block codes the reduced

complexity soft-decision decoding algorithms in

Part II should prove useful. These features, to-

gether with a limited spread-spectrum capability, are

presently being incorporated into the ICS and some

preliminary results for single-element reception

are reported in Part I. It is expected that these

results will provide useful insight in the adaptive

multi-element case. At any rate, some combination

of predetection and/or postdetection nonlinear pro-

cessing is expected to be required in the temporal

receiver.

3. Adantive Algorithms: As noted previously, various

adaptive algorithms will be investigated for their

suitability in this application. Of particular

interest will be the performance in impulsive or

burst noise environments. For example, should some
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type of performance monitor be provided 'o sense

the presence or absence of interference and allow

array adaption only when believed present? How

should a performance monit.or be impiemented? Are

specific adaptive algorithms particularly sensitive

to spatially distributed interference of the irvul-

sive or burst variety? These and other questions

are to be thoroughly explored.

4. Behavior of Ancillary Systems: A number of ancill-

ary systems such as bit synchonizers and phase

trackers are required as part of a functioning dig-

ital communications receiver. Our interest %ill

be in investigating the behavior of these ancilary

systems in the presence of spatially distributed

interference and adaptive array processing. Alter-

native design strategies which provide more robust

performance in this environment will be developed

and investigated through simulation. The results

should prove useful in the development of integrat-

ed spatial/temporal processor for digital communi-

cations in spatially distributed interference

channels.

V. Summary and Conclusions:

We have provided an outline of how an adaptive array _rocessing cap-

a'zility can be incorporated into the existing ICS and have described some

initial research directions that will make extensive use of this capa-bility.

T.e structure described here, with appropriate modification as required,

.-ill be incorporated into the ICS as part of ongoing efforts. Explicit

documentation, as well as simulation results will be reported at frequent

intervals.
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